Knowledge base: Warsaw University of Technology

Settings and your account

Back

Optimization of operating parameters of the regeneration system for medium power turbine

Marcin Kowalski

Abstract

This paper presents a reflection on the system consisting of steam turbine and heat recovery line. The special attention was paid to the process of heat recovery of water supply. The aim of this study was to examine the possibility of using the steam turbine bearings oil cooler as a heat exchanger in low pressure part of heat recovery line. Second aim was to create a mathematical model of the turbine with heat recovery and to optimize this model. Exploration of the oil cooler as regenerative heat exchanger was possible through consultation with the Department of Small Steam Turbine from Elbląg (DSST) which is the part of Alstom Power Group. DSST proposed the inclusion of the oil cooler in the turbine thermal system which were analyzed in this paper and provided a diagram of a particular turbine thermal system. This task was developed using the General Electric GateCycle software. A more detailed description of the program and its capabilities are presented in section 4a. The first step of this task was to map the pattern as delivered by DSST into the GateCycle software. After a successful mapping scheme in GateCycle, the impact of oil cooler at turbine thermal system was analyzed. There were three analyzed variants of oil cooler inclusion into the turbine thermal system: oil cooler after a condenser, oil cooler after a jet steam ejector, oil cooler after gland steam condenser. The results are presented as graphs and tables in section 4h. From these results it was concluded that the use of steam turbine bearings oil cooler as a regenerative heat exchanger in turbine thermal system has a little impact on this system. The optimal solution may be found in the variant with oil cooler after the jet steam ejector or gland steam condenser. However, the differences between the variants turned out to be so small (within an error of calculation) that author decided not to settle unequivocally the superiority of either of these options. The second task of this word was to build and optimize a mathematical model of a steam turbine with heat recovery line. The mathematical model was developed in Microsoft Excel spreadsheet and optimization was performed using the Solver. The mathematical model was built based on already mentioned and used steam thermal system diagram provided by DSST. The paragraphs 5b and 5c are presenting the process of building the model: the assumptions, equations and algorithms used to create the model. After the model was completed, the optimization was performed. The optimization was performed in two variants. The first variant assumes that the model was optimized with restriction that after the optimization process, the particular water temperature after the last heat exchanger, was supposed to be achieved. The second variant assumes that the optimization process was carried out with constant temperature of water in the deaerator. Each of these variants of optimization was optimize in two ways. First way was to optimize to achieve the highest efficiency and the second way was to optimize to achieve the highest profit (profit was determined as the difference in income from energy sale and fuel and heat exchangers costs). The values of the optimal (highest) profits and efficiency were presented in section 5f as graphs. Those diagrams are presented as a function of deaeration temperature and the temperature after the last heat exchanger. The exact number values are presented in tabular form in annex B. From the results it was concluded that, in variant were optimization is carried out with restriction of preset water temperature after the last heat exchanger, the optimal points due to the efficiency and profit are the same. In the case of optimization at a specific deaeration temperature the results coming from optimization due to profit and efficiency were different from each other. A more detailed description and analysis of results was carried out in section 5g.
Record ID
WUT03832f6030c74583aa743cf200cc6b6a
Diploma type
Master of Science
Author
Marcin Kowalski (FPAE/IHE) Marcin Kowalski,, The Institute of Heat Engineering (FPAE/IHE)Faculty of Power and Aeronautical Engineering (FPAE)
Title in Polish
Optymalizacja parametrów pracy układu regeneracji turbozespołu średniej mocy
Supervisor
Janusz Lewandowski (FPAE/IHE) Janusz Lewandowski,, The Institute of Heat Engineering (FPAE/IHE)Faculty of Power and Aeronautical Engineering (FPAE)
Certifying unit
Faculty of Power and Aeronautical Engineering (FPAE)
Affiliation unit
The Institute of Heat Engineering (FPAE/IHE)
Study subject / specialization
, Energetyka (Power Engineering)
Language
(pl) Polish
Status
Finished
Defense Date
28-06-2012
Issue date (year)
2012
Pages
90
Internal identifier
MEL; PD-1847
Reviewers
Janusz Lewandowski (FPAE/IHE) Janusz Lewandowski,, The Institute of Heat Engineering (FPAE/IHE)Faculty of Power and Aeronautical Engineering (FPAE) Wojciech Bujalski (FPAE/IHE) Wojciech Bujalski,, The Institute of Heat Engineering (FPAE/IHE)Faculty of Power and Aeronautical Engineering (FPAE)
Keywords in Polish
turbozespoły, optymalizacja, układy regulacji
Keywords in English
turbochargers, optimization, adjustment systems
Abstract in Polish
W niniejszej pracy przedstawiono rozważania na temat układu cieplnego turbozespołu a szczególną uwagę poświęcono procesowi regeneracji wody zasilającej. Celem poniższej pracy było sprawdzenie możliwości wykorzystania chłodnicy oleju spływowego z łożysk turbiny jako wymiennika regeneracyjnego niskoprężnego w obiegu parowo – wodnym oraz stworzenie modelu matematycznego układu cieplnego turbiny wraz z linią regeneracji oraz dokonanie optymalizacji stworzonego modelu. Badanie możliwości wykorzystania chłodnicy oleju jako wymiennika regeneracyjnego było możliwe dzięki konsultacjom z Zakładem Małych Turbin Parowych (ZMTP) działającym w Alstom Power w Elblągu. ZMTP zaproponował miejsca włączenia chłodnicy w układ cieplny turbozespołu, które zostały przeanalizowane w tej pracy oraz dostarczył schemat cieplny konkretnego turbozespołu. Do wykonania tego zadania użyto oprogramowania General Electric GateCycle. Szerszy opis programu oraz jego możliwości zostały przedstawione w rozdziale 4a. Pierwszym etapem tego zadania było odwzorowanie dostarczonego schematu cieplnego w programie GateCycle. Po poprawnym odwzorowaniu schematu w programie GateCycle przystąpiono do badania wpływu chłodnicy oleju na układ. O poprawności odwzorowania świadczyły znikome różnice wartości w punktach charakterystycznych obiegu. Przeanalizowano trzy warianty włączenia chłodnicy w obieg: chłodnica za skraplaczem głównym, chłodnica za smoczkami parowymi, chłodnica za chłodnicą pary z dławnic. Otrzymane wyniki przedstawiono w postaci wykresów oraz tabel w punkcie 4h. Z otrzymanych wyników wywnioskowano, że zastosowanie chłodnicy oleju spływowego z łożysk w układzie cieplnym turbiny wywiera na ten układ niewielki wpływ. Rozwiązania optymalnego należałoby szukać w wariancie z chłodnicą oleju umieszczoną za smoczkami parowymi lub za chłodnicą pary z dławnic. Jednakże różnice między tymi wariantami okazały się być tak małe ( w granicach błędu obliczeniowego), że autor postanowił nie rozstrzygać jednoznacznie o wyższości któregokolwiek z tych wariantów. Drugim zadaniem niniejszej pracy było zbudowanie modelu matematycznego turbozespołu parowego wraz z linią regeneracji oraz zoptymalizowanie otrzymanego modelu. Model matematyczny został stworzony w arkuszu kalkulacyjnym Microsoft Excel a optymalizacja dokonywana była za pomocą dodatku SOLVER. Za wzór, posłużył wykorzystywany już obieg cieplny dostarczony przez ZMTP. W punktach 5b oraz 5c przedstawiono proces budowy modelu: przyjęte założenia, wykorzystane równania oraz algorytm tworzenia modelu. Po stworzeniu modelu dokonana została optymalizacja. Optymalizacja przeprowadzana była w dwóch wariantach. Wariant pierwszy zakładał, że model był optymalizowany w taki sposób aby po zakończeniu procesu optymalizacji osiągnięta została zadana przez użytkownika temperatura wody zasilającej – za ostatnim podgrzewaczem regeneracyjnym. Wariant drugi zakładał natomiast, że proces optymalizacji odbywa się przy założonej i stałej temperaturze odgazowania. Powyższe warianty optymalizowane był ze względu na sprawność oraz zysk układu. Wartości optymalne (największe) sprawności i zysku (rozumianego jako różnica pomiędzy przychodami z tytułu sprzedaży energii elektrycznej oraz kosztami zakupu paliwa i wymienników regeneracyjnych) układu zostały przedstawione w punkcie 5f w postaci wykresów w funkcji temperatury odgazowania oraz temperatury wody zasilającej. Uzyskane dane liczbowe przedstawione zostały w formie tabel w załączniku B. Z uzyskanych wyników wywnioskowano, że w przypadku optymalizacji z warunkiem osiągnięcia zadanej temperatury wody zasilającej, punkty optymalne ze względu na sprawność oraz na zysk pokrywają się. W przypadku optymalizacji przy określonej temperaturze odgazowania wyniki uzyskane dla optymalnej sprawności oraz optymalnego zysku różniły się od siebie. Szerszy opis i analizę wyników przeprowadzono w punkcie 5g.
File
  • File: 1
    Marcin Kowalski - praca magisterska.docx
Request a WCAG compliant version

Uniform Resource Identifier
https://repo.pw.edu.pl/info/master/WUT03832f6030c74583aa743cf200cc6b6a/
URN
urn:pw-repo:WUT03832f6030c74583aa743cf200cc6b6a

Confirmation
Are you sure?
Report incorrect data on this page