Knowledge base: Warsaw University of Technology

Settings and your account

Back

Numerical study of deflagration to detonation transition in hydrogen-air mixtures near detonability limits

Łukasz Bazydło

Abstract

The subject of this thesis is to investigate capabilities to simulate deflagration to detonation transition of OpenFOAM program, particularly ddtFoam solver. The emphasis is put onto examining simulation results for hydrogen-air mixtures near detonability limits and their validation with experimental data. In the introduction, the deflagration to detonation transition phenomenon is introduced and the problem of its modeling near detonability limits is outlined. Afterwards, the safety issues regarding hydrogen usage are pointed out. The next chapter focuses on theoretical background of detonation. Based on the literature, the concept of detonation, Rankine-Hugoniot curve, Rayleigh line and Chapman-Jouguet theory are presented. Subsequently, the ZND theory is introduced along with more detailed detonation structure description. At the end of the chapter, the basics of deflagration to detonation transition phenomenon are demonstrated. In the next part, combustion simulation methods are explained, including conservation equations, turbulence and turbulence-chemistry interaction, deflagration and detonation modeling. Then, the state of the art about deflagration to detonation transition phenomenon modeling is presented and ddtFoam solver is described in detail. Following, the simulations set-up procedure is presented as follows. Experimental set-up conditions reported by dr inż. W. Rudy’s and P. Dądela’s were simulated in the OpenFOAM environment and a series of numerical simulations was carried out. Considered geometrical domain was 4 m long channel with a rectangular cross section of 110 x 80 mm. Along the channel length the obstacle of blockage ratio 0.5 are placed. Simulation variables were: obstacle spacing (H, 2H, 3H spacing, which corresponds to 80, 160, 240 mm between consecutive obstacles) and hydrogenair mixture composition (15 - 65 %H2, which corresponds to equivalence ratio ϕ 0.42 - 4.42). In total, simulations of 26 different cases were performed: 14 of them were meant to be compared to experimental data and the other 12 were set to expand mixtures’ composition range for further investigation. Next, simulations results are compared with experimental data. Finally, based on conducted numerical study, conclusions are drawn and possible directions for further research on thesis issue are given.
Diploma type
Engineer's / Bachelor of Science
Diploma type
Engineer's thesis
Author
Łukasz Bazydło (FPAE) Łukasz Bazydło,, Faculty of Power and Aeronautical Engineering (FPAE)
Title in Polish
Badania numeryczne przejścia od deflagracji do detonacji w mieszaninach wodorowo-powietrznych w pobliżu granic detonacyjności
Supervisor
Wojciech Rudy (FPAE/IHE) Wojciech Rudy,, The Institute of Heat Engineering (FPAE/IHE)Faculty of Power and Aeronautical Engineering (FPAE)
Certifying unit
Faculty of Power and Aeronautical Engineering (FPAE)
Affiliation unit
The Institute of Heat Engineering (FPAE/IHE)
Study subject / specialization
, Energetyka (Power Engineering)
Language
(en) English
Status
Finished
Defense Date
07-02-2019
Issue date (year)
2019
Pages
69
Internal identifier
MEL; PD-4934
Reviewers
Wojciech Rudy (FPAE/IHE) Wojciech Rudy,, The Institute of Heat Engineering (FPAE/IHE)Faculty of Power and Aeronautical Engineering (FPAE) Andrzej Teodorczyk (FPAE/IHE) Andrzej Teodorczyk,, The Institute of Heat Engineering (FPAE/IHE)Faculty of Power and Aeronautical Engineering (FPAE)
Keywords in Polish
DDT, ddtFoam, detonacja, granice detonacyjności, OpenFOAM, symulacja, wodór
Keywords in English
DDT, ddtFoam, detonation, detonability limits, OpenFOAM, simulation, hydrogen
Abstract in Polish
Przedmiotem tej pracy inżynierskiej jest zbadanie możliwości oprogramowania Open- FOAM, a dokładniej solver’a ddtFoam, do symulowania zjawiska przejścia od deflagracji do detonacji w mieszaninach wodorowo-powietrznych w pobliżu ich granic detonacyjności, oraz porównanie wyników tychże symulacji z danymi eksperymentalnymi. We wstępie objaśniono zjawisko przejścia od deflagracji do detonacji oraz nakreślono problemy wiążące się z jego modelowaniem w pobliżu granic detonacyjności. Następnie zwrócono uwagę na kwestie bezpieczeństwa dotyczące możliwości przejścia do detonacji mieszanin wodorowo-powietrznych. Następny rozdział koncentruje się na teoretycznych podstawach detonacji. W oparciu o literaturę opisano zjawisko detonacji, krzywą Rankina-Hugoniota, linię Rayleigha i teorię Chapmana-Jougueta. Następnie przedstawiono teorię ZND wraz z bardziej szczegółowym opisem struktury detonacji. Na końcu rozdziału scharakteryzowano podstawy zjawiska przejścia od deflagracji do detonacji. W następnym rozdziale zaprezentowano metody symulacji spalania, w tym sposoby modelowania równań zachowania, turbulencji i jej interakcji z kinetyką reakcji, oraz deflagracji i detonacji. Następnie dokonano przeglądu stanu wiedzy na temat modelowania zjawiska przejścia od deflagracji do detonacji i szczegółowo opisano solver ddtFoam. W dalszym ciągu przedstawiono procedurę konfigracji warunków symulacji, która wygląda w następujący sposób. Symulacje odwzorowują uwarunkowania eksperymentów przeprowadzonych przez dr inż. W. Rudego oraz P. Dądelę. Eksperymenty zostały przeprowadzone w 4 metrowym kanale o przekroju prostokątnym (110 x 80 mm). Na całej długości kanału umieszczono przeszkody o współczynniku przykrycia kanału 0,5. Symulacje zostały przeprowadzone dla różnych przypadków odstępów pomiędzy przeszkodami (H, 2H, 3H, co odpowiada 80, 160, 240 mm pomiędzy kolejnymi przeszkodami), oraz różnych składów mieszaniny wodorowo-powietrznej (15 - 65 % zawartości wodoru). W sumie przeprowadzono symulacje dla 26 różnych przypadków: 14 w celu porównania z danymi eksperymentalnymi, a pozostałe 12 w celu rozszerzenia zakresu składu mieszanin do dalszych badań. Następnie wyniki symulacji porównano z wynikami eksperymentów. Na koniec, wyciągnięto wnioski na podstawie przeprowadzonych badań numerycznych, oraz podano możliwe kierunki dalszych badań nad rozważanym zagadnieniem.
File
  • File: 1
    lukasz_bazydlo_praca_inzynierska.pdf
Request a WCAG compliant version
Local fields
Identyfikator pracy APD: 31362

Uniform Resource Identifier
https://repo.pw.edu.pl/info/bachelor/WUTcfa921f0681d43aa8faaa8b385469090/
URN
urn:pw-repo:WUTcfa921f0681d43aa8faaa8b385469090

Confirmation
Are you sure?
Report incorrect data on this page