Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination

Tymoteusz Ciuk , Iwona Pasternak , Aleksandra Krajewska , Jan Sobieski , Piotr Caban , Jan Szmidt , Włodek Strupiński

Abstract

We report on the electrical characterization and Raman spectroscopy of chemical vapor deposition copper-grown graphene transferred onto a Si/SiO 2 substrate by high-speed (1 mm/s) electrochemical delamination. We determine graphene's sheet resistance, carrier mobility, and concentration as well as its physical quality as a function of the electolyte concentration. Graphene's electrical properties are investigated with standard Hall measurements in van der Pauw geometry and a contactless method that employs a single-post dielectric resonator operating at microwave frequencies. These properties are related to the widely used copper etching technique. The results prove that the high-speed electrochemical delamination provides good-quality graphene within a short time scale. © 2013 American Chemical Society.

Author Tymoteusz Ciuk
Tymoteusz Ciuk,,
-
, Iwona Pasternak - Instytut Technonogii Materiałów Elektronicznych
Iwona Pasternak,,
-
, Aleksandra Krajewska
Aleksandra Krajewska,,
-
, Jan Sobieski (FP / SRD)
Jan Sobieski,,
- Structural Research Division
, Piotr Caban
Piotr Caban,,
-
, Jan Szmidt (FEIT / MO)
Jan Szmidt,,
- The Institute of Microelectronics and Optoelectronics
, Włodek Strupiński
Włodek Strupiński,,
-
Journal seriesThe Journal of Physical Chemistry Part C: Nanomaterials, Interfaces and Hard Matter, ISSN 1932-7447, e-ISSN 1932-7455
Issue year2013
Vol117
Pages20833-20837
Publication size in sheets0.5
ASJC Classification1606 Physical and Theoretical Chemistry; 2100 General Energy; 2504 Electronic, Optical and Magnetic Materials; 2508 Surfaces, Coatings and Films
Languageen angielski
Score (nominal)35
Score sourcejournalList
ScoreMinisterial score = 35.0, 02-09-2020, ArticleFromJournal
Ministerial score (2013-2016) = 35.0, 02-09-2020, ArticleFromJournal
Publication indicators Scopus Citations = 46; WoS Citations = 53; GS Citations = 65.0; Scopus SNIP (Source Normalised Impact per Paper): 2013 = 1.432; WoS Impact Factor: 2013 = 4.835 (2) - 2013=5.241 (5)
Citation count*65 (2020-09-21)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?