Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological application

Adrian Chlanda , Justyna Witkowska , Jerzy Morgiel , Katarzyna Nowińska , Emilia Choińska , Wojciech Święszkowski , Tadeusz Wierzchoń

Abstract

NiTi shape memory alloys are characterized by relatively good biocompatibility primarily thanks to their ability to self-passivate. However, before they can be used as medical implants for long term use, they need to undergo treatment aimed at producing layers on their surface that are superior to spontaneously formed oxide layers and that would increase their resistance to corrosion, limit nickel ion release from the surface (metallosis) and have the capability to shape their biological properties depending on the application. Furthermore, cardiac implants require addressing the issue of blood clotting on the surface. Treatment in glow-discharge low temperaturę plasma makes it possible to produce titanium layers with a structure and properties that are controlled via process parameters. In addition, antithrombogenic properties can be improved by depositing a carbon coating via the RFCVD process. The aim of the study was to investigate the structure, Surface topography, adhesive properties, wettability, surface free energy and evaluate metallosis after producing TiO2 and a-C:N:H+TiO2 composite layers on NiTi alloy. The capabilities of AFM microscopes in studying the adhesive properties of a surface were also highlighted in the study. The study shows that the produced surface layers are capable of significantly reducing metallosis. Furthermore, in contrast to NiTi in its initial state, layers of nanocrystalline TiO2 titanium oxide (rutile) with a homogeneous structure demonstrate greater adhesion strength and more developed surface in the microscale, which facilitates the formation of an a-C:N:H coating. Therefore the formation of a coating of a-C:N:H amorphous carbon on NiTi alloy that has previously been oxidised in lowtemperature plasma may prove to be a favourable solution in terms of using NiTi alloy to produce cardiac implants.
Author Adrian Chlanda (FMSE / DMD)
Adrian Chlanda,,
- Division of Materials Design
, Justyna Witkowska (FMSE / DSE)
Justyna Witkowska,,
- Division of Surface Engineering
, Jerzy Morgiel - Instytut Metalurgii i Inżynierii Materiałowej PAN (IMIM) [Polska Akademia Nauk (PAN)] [Politechnika Slaska w Gliwicach]
Jerzy Morgiel,,
-
-
, Katarzyna Nowińska - [Instytut Metalurgii i Inzynierii Materialowej Polskiej Akademii Nauk]
Katarzyna Nowińska,,
-
-
, Emilia Choińska (FMSE / DMD)
Emilia Choińska,,
- Division of Materials Design
, Wojciech Święszkowski (FMSE / DMD)
Wojciech Święszkowski,,
- Division of Materials Design
, Tadeusz Wierzchoń (FMSE / DSE)
Tadeusz Wierzchoń,,
- Division of Surface Engineering
Journal seriesMicron, ISSN 0968-4328, (A 30 pkt)
Issue year2018
Vol114
Pages14-22
Publication size in sheets0.5
Keywords in EnglishAtomic force microscopy; Force spectroscopy; Glow discharge oxidizing; RFCVD proces; Shape memory alloys
ASJC Classification1307 Cell Biology; 1315 Structural Biology
DOIDOI:10.1016/j.micron.2018.07.009
URL https://www.sciencedirect.com/science/article/pii/S0968432818302087?via%3Dihub
Languageen angielski
File
zgłoszenie_artykuł_Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological ap.docx 17.26 KB
Score (nominal)30
ScoreMinisterial score = 30.0, 23-09-2019, ArticleFromJournal
Publication indicators Scopus Citations = 3; WoS Citations = 3; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 1.005; WoS Impact Factor: 2017 = 1.728 (2) - 2017=2.013 (5)
Citation count*4 (2019-10-08)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back