The accuracy of a 2D and 3D dendritic tip scaling parameter in predicting the columnar to equiaxed transition (CET)

Mirosław Seredyński , Marek Rebow , Jerzy Banaszek


The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors' attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt's analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed.
Author Mirosław Seredyński (FPAE / IHE)
Mirosław Seredyński,,
- The Institute of Heat Engineering
, Marek Rebow - College of Engineering and Built Environment, Dublin Institute of Technology
Marek Rebow,,
, Jerzy Banaszek (FPAE / IHE)
Jerzy Banaszek,,
- The Institute of Heat Engineering
Journal seriesJournal of Physics - Conference Series, ISSN 1742-6588, [1742-6596]
Issue year2016
Publication size in sheets0.5
Conference7th European Thermal-Sciences Conference (Eurotherm 2016), 19-06-2016 - 23-06-2016, Kraków, Polska
ASJC Classification3100 General Physics and Astronomy
Languageen angielski
Seredyński_2016_J._Phys.%3A_Conf._Ser._745_032074.pdf 1.39 MB
Score (nominal)15
Score sourceconferenceIndex
ScoreMinisterial score = 15.0, 25-10-2019, ArticleFromJournalAndMatConfByConferenceseries
Ministerial score (2013-2016) = 15.0, 25-10-2019, ArticleFromJournalAndMatConfByConferenceseries
Publication indicators Scopus Citations = 0; WoS Citations = 0; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 0.401
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?