Fine singularity analysis of solutions to the Laplace equation, Berg effect

Adam Kubica , Piotr Rybka

Abstract

We study Berg’s effect on special domains. This effect is understood as a monotonicity of a harmonic function (with respect to the distance from the center of a flat part of the boundary) restricted to the boundary. The harmonic function must satisfy piecewise constant Neumann boundary conditions. We show that Berg’s effect is a rare and fragile phenomenon.
Author Adam Kubica (FMIS / DFE)
Adam Kubica,,
- Department of Functional Equations
, Piotr Rybka - [University of Warsaw (UW), MNiSW [80]]
Piotr Rybka,,
-
- Uniwersytet Warszawski
Journal seriesMathematical Methods in the Applied Sciences, ISSN 0170-4214, (A 25 pkt)
Issue year2016
Vol39
No5
Pages1069-1075
Publication size in sheets0.5
Keywords in Englishsingularities of harmonic functions, polygonal domains, piecewise constant Neumann data, Berg’s effect
ASJC Classification2200 General Engineering; 2600 General Mathematics
Abstract in PolishW pracy badano zachodzenie tzw. efektu Berga w specjalnych obszarach wielokątnych. Korzystając z wcześniejszych rezultatów pokazano, iż efekt ten jest niestabilny. Mianowicie, zaburzenie obszaru w którym efekt Berga zachodzi prowadzi do jego zaniku.
DOIDOI:10.1002/mma.3546
URL http://onlinelibrary.wiley.com/doi/10.1002/mma.3546/abstract
Languageen angielski
Score (nominal)25
ScoreMinisterial score = 25.0, 19-09-2019, ArticleFromJournal
Ministerial score (2013-2016) = 25.0, 19-09-2019, ArticleFromJournal
Publication indicators Scopus Citations = 0; WoS Citations = 0; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 0.766; WoS Impact Factor: 2016 = 1.017 (2) - 2016=1.031 (5)
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?