Genomic and biotechnological characterization of the heavy-metal resistant, arsenic-oxidizing bacterium Ensifer sp. M14

George C diCenzo , Klaudia Dębiec , Jan Krzysztoforski , Witold Uhrynowski , Alessio Mengoni , Camilla Fagorzi , Adrian Gorecki , Lukasz Dziewit , Tomasz Bajda , Grzegorz Rzepa , Łukasz Drewniak

Abstract

Ensifer (Sinorhizobium) sp. M14 is an efficient arsenic-oxidizing bacterium (AOB) that displays high resistance to numerous metals and various stressors. Here, we report the draft genome sequence and genome-guided characterization of Ensifer sp. M14, and we describe a pilot-scale installation applying the M14 strain for remediation of arsenic-contaminated waters. The M14 genome contains 6874 protein coding sequences, including hundreds not found in related strains. Nearly all unique genes that are associated with metal resistance and arsenic oxidation are localized within the pSinA and pSinB megaplasmids. Comparative genomics revealed that multiple copies of high-affinity phosphate transport systems are common in AOBs, possibly as an As-resistance mechanism. Genome and antibiotic sensitivity analyses further suggested that the use of Ensifer sp. M14 in biotechnology does not pose serious biosafety risks. Therefore, a novel two-stage installation for remediation of arsenic-contaminated waters was developed. It consists of a microbiological module, where M14 oxidizes As(III) to As(V) ion, followed by an adsorption module for As(V) removal using granulated bog iron ores. During a 40-day pilot-scale test in an abandoned gold mine in Zloty Stok (Poland), water leaving the microbiological module generally contained trace amounts of As(III), and dramatic decreases in total arsenic concentrations were observed after passage through the adsorption module. These results demonstrate the usefulness of Ensifer sp. M14 in arsenic removal performed in environmental settings.
Author George C diCenzo
George C diCenzo,,
-
, Klaudia Dębiec
Klaudia Dębiec,,
-
, Jan Krzysztoforski (FCPE / DCRED)
Jan Krzysztoforski,,
- Department of Chemical Reactor Engineering and Dynamics
, Witold Uhrynowski
Witold Uhrynowski,,
-
, Alessio Mengoni
Alessio Mengoni,,
-
, Camilla Fagorzi
Camilla Fagorzi,,
-
, Adrian Gorecki
Adrian Gorecki,,
-
, Lukasz Dziewit
Lukasz Dziewit,,
-
, Tomasz Bajda
Tomasz Bajda,,
-
, Grzegorz Rzepa
Grzegorz Rzepa,,
-
et al.`
Journal seriesGenes, ISSN 2073-4425, (A 25 pkt)
Issue year2018
Vol9
No8
Pages1-24
Publication size in sheets1.2
Keywords in EnglishEnsifer (Sinorhizobium) sp. M14, arsenic-oxidizing bacteria, heavy metal resistance, draft genome sequence, comparative genomic analysis, biosafety, biotechnology for arsenic removal, adsorption, water treatment, in situ (bio)remediation
ASJC Classification2716 Genetics(clinical); 1311 Genetics
DOIDOI:10.3390/genes9080379
URL http://www.mdpi.com/2073-4425/9/8/379/htm
Languageen angielski
File
diCenzo G.C. (i in) - Genomic and biotechnological...pdf 1.97 MB
Score (nominal)25
ScoreMinisterial score = 25.0, 23-09-2019, ArticleFromJournal
Publication indicators WoS Citations = 2; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 0.753; WoS Impact Factor: 2017 = 3.191 (2) - 2017=3.286 (5)
Citation count*2 (2019-10-18)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back