Dynamical Poroplasticity Model with mixed boundary conditions - theory for LM-type nonlinearity

Konrad Kisiel , Kamil Kosiba

Abstract

We investigate the existence theory to the non-coercive fully dynamic model of poroplasticity with nonhomogeneous mixed boundary condition and constitutive equation which belongs to the class LM. Existence of the solution to this model is proved by using the coercive and Yosida approximations under the lowest possible assumptions about LM-type nonlinearity of non-gradient type. Under higher assumptions about the constitutive equation and boundary conditions we obtain uniqueness and higher regularity of the solutions.
Author Konrad Kisiel WMiNI
Konrad Kisiel,,
- Faculty of Mathematics and Information Science
, Kamil Kosiba
Kamil Kosiba,,
-
Journal seriesJournal of Mathematical Analysis and Applications, ISSN 0022-247X
Issue year2016
Vol443
No1
Pages187-229
Publication size in sheets2.1
Keywords in EnglishYosida approximation, Coercive approximation, Energy method, Inelastic deformation theory, Monotone operator, Poroplasticity
Abstract in PolishW pracy zbadana jest teoria istnienia rozwiązań dla niekoercytywnego, dynamicznego modelu poroplastyczności z niezerowymi mieszanymi warunkami brzegowymi. Przy założeniu, że prawa strona nieliniowego związku konstytutywnego jest elementem klasy LM oraz spełnia odpowiednie warunki wzrostu (nie jest zakładana struktura gradientowa) uzyskany został wynik istnienia słabych rozwiązań dla których związek konstytutywny jest spełniony jedynie w sensie miar Younga. Wyższe założenia dotyczące struktury nieliniowej pozwoliły na podwyższenie regularności otrzymanego rozwiązania (tak aby związek konstytutywny spełniony był prawie wszędzie) oraz wykazanie jego jednoznaczności.
DOIDOI:10.1016/j.jmaa.2016.05.013
URL http://www.sciencedirect.com/science/article/pii/S0022247X1630155X
Languageen angielski
Score (nominal)40
ScoreMinisterial score = 35.0, 28-11-2017, ArticleFromJournal
Ministerial score (2013-2016) = 40.0, 28-11-2017, ArticleFromJournal
Publication indicators WoS Impact Factor: 2016 = 1.064 (2) - 2016=1.151 (5)
Citation count*0
Cite
Share Share



* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back