Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size

D. Luca , Karol Szlązak , I. Lorenzo-Moldero , C.A. Ghebes , A. Lepedda , Wojciech Święszkowski , C. Van Blitterswijk , L. Moroni

Abstract

Articular cartilage lesions have a limited ability to heal by themselves. Yet, golden standard treatments for cartilage repair such as drilling, microfracture and mosaicplasty provide further damage and an unstable solution that degenerates into fibrocartilage in time. Articular cartilage presents a number of gradients in cell number and size along with structural gradients in extra cellular matrix (ECM) composition. Therefore, creating scaffolds that display a structural gradient can be an appealing strategy for cartilage tissue regeneration treatments. In the present study, a scaffold with an in-built discrete gradient in pore size was produced by additive manufacturing. Human mesenchymal stromal cells (hMSCs) were seeded within the gradient scaffolds and their proliferation, differentiation and ECM deposition was evaluated with respect to 2 non-gradient scaffolds. Glycosaminoglycan (GAG) deposition was significantly higher in gradient scaffolds and non-gradient scaffolds with the smallest pore size compared to non-gradient scaffolds with the largest pore size. A gradual increase of chondrogenic markers was observed within the gradient structures with decreasing pore size, which was also accompanied by an increasingly compact ECM formation. Therefore, scaffolds displaying a structural gradient in pore size seem to be a promising strategy to aid in the process of hMSC chondrogenic differentiation and could be considered for improved cartilage tissue regeneration applications. Statement of Significance: We present the development of a novel hierarchical scaffold obtained by additive manufacturing. Structural hierarchy is obtained by changing pore size within the pore network characterizing the fabricated scaffolds and proves to be a functional element in the scaffold to influence adult stem cell differentiation in the chondrogenic lineage. Specifically, in regions of the scaffolds presenting smaller pores an increasing differentiation of stem cells toward the chondrogenic differentiation is displayed. Taking inspiration from the zonal organization of articular cartilage tissue, pore size gradients could, therefore, be considered as a new and important element in designing 3D scaffolds for regenerative medicine applications, in particular for all those tissues where gradient physical properties are present.
Author D. Luca
D. Luca,,
-
, Karol Szlązak (FMSE / DMD)
Karol Szlązak,,
- Division of Materials Design
, I. Lorenzo-Moldero - [University of Twente]
I. Lorenzo-Moldero,,
-
-
, C.A. Ghebes - [University of Twente]
C.A. Ghebes,,
-
-
, A. Lepedda - [Università degli Studi di Sassari]
A. Lepedda,,
-
-
, Wojciech Święszkowski (FMSE / DMD)
Wojciech Święszkowski,,
- Division of Materials Design
, C. Van Blitterswijk - [University of Twente]
C. Van Blitterswijk,,
-
-
, L. Moroni - [University of Twente]
L. Moroni,,
-
-
Journal seriesActa Biomaterialia, ISSN 1742-7061, (A 45 pkt)
Issue year2016
Vol36
Pages210-219
Publication size in sheets0.5
Keywords in EnglishGradients; 3D scaffolds; Additive manufacturing; Stem cells
ASJC Classification1312 Molecular Biology; 2204 Biomedical Engineering; 1303 Biochemistry; 2502 Biomaterials; 2700 General Medicine; 1305 Biotechnology
DOIDOI:10.1016/j.actbio.2016.03.014
URL http://www.sciencedirect.com/science/article/pii/S1742706116300988
Languageen angielski
Score (nominal)45
Score sourcejournalList
ScoreMinisterial score = 45.0, 31-01-2020, ArticleFromJournal
Ministerial score (2013-2016) = 45.0, 31-01-2020, ArticleFromJournal
Publication indicators Scopus Citations = 41; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 1.958; WoS Impact Factor: 2016 = 6.319 (2) - 2016=6.804 (5)
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?