Challenges in QCD matter physics – The Compressed Baryonic Matter experiment at FAIR

T. Ablyazimov , Krzysztof Poźniak , Ryszard Romaniuk , Wojciech Zabołotny


Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter - Wydawca - CBM Collaboration at FAIR, GSI Darmstadt 2016
Collective authorCBM Collaboration
Author T. Ablyazimov
T. Ablyazimov,,
, Krzysztof Poźniak ISE
Krzysztof Poźniak,,
- The Institute of Electronic Systems
, Ryszard Romaniuk ISE
Ryszard Romaniuk,,
- The Institute of Electronic Systems
, Wojciech Zabołotny ISE
Wojciech Zabołotny,,
- The Institute of Electronic Systems
Total number of authors526
Journal seriesarXiv, ISSN 2331-8422
Issue year2016
Publication size in sheets0.65
Languageen angielski
Score (nominal)5
ScoreMinisterial score [Punktacja MNiSW] = 0.0, 27-03-2017, ArticleFromJournal
Ministerial score (2013-2016) [Punktacja MNiSW (2013-2016)] = 5.0, 27-03-2017, ArticleFromJournal
Citation count*0 (2018-03-27)
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.