Parallel Hamiltonian Formulation for Forward Dynamics of Free-Flying Manipulators

Paweł Malczyk , Krzysztof Chadaj , Janusz Frączek

Abstract

This paper presents a recursive parallel formulation for the simulation of complex free-flying, potentially multi-arm, manipulators. The proposed divide and conquer algorithm (HDCA) is based on Hamilton’s canonical equations expressed in a minimal set of canonical coordinates. The HDCA allows one to efficiently and accurately simulate the dynamics of multi-rigid-body robotic systems possessing tree-like topologies. The developed HDCA formulation leads to a two-stage procedure. At first, the joint velocities, free-flying base body velocities, and all constraint impulsive loads at joints are evaluated in a divide and conquer manner. The time derivatives of the momenta are directly evaluated in the second parallelizable stage of the algorithm. The dynamics of a multi-arm space robot is investigated in a simplified scenario of chasing and capturing an object. Simple independent joint control laws are designated for the planned maneuver. Sample simulation results illustrate the verification of the proposed approach with the prospect for the analysis of more complex space robots involving closed-loops. Also, the parallel efficiency of the HDCA algorithm is addressed in the form of parallel performance results on graphics processor units.
Author Paweł Malczyk (FPAE / IAAM)
Paweł Malczyk,,
- The Institute of Aeronautics and Applied Mechanics
, Krzysztof Chadaj (FPAE / IAAM)
Krzysztof Chadaj,,
- The Institute of Aeronautics and Applied Mechanics
, Janusz Frączek (FPAE / IAAM)
Janusz Frączek,,
- The Institute of Aeronautics and Applied Mechanics
Pages1-15
Publication size in sheets0.7
Book Sąsiadek Jerzy (eds.): Aerospace Robotics III, GeoPlanet: Earth and Planetary Sciences, 2019, Springer International Publishing, ISBN 978-3-319-94516-3, [978-3-319-94517-0], 203 p., DOI:10.1007/978-3-319-94517-0
ASJC Classification1900 General Earth and Planetary Sciences
DOIDOI:10.1007/978-3-319-94517-0_1
URL https://link.springer.com/chapter/10.1007%2F978-3-319-94517-0_1
Languageen angielski
Score (nominal)10
ScoreMinisterial score = 10.0, 26-04-2019, BookChapterJournalSeries
Publication indicators Scopus Citations = 0; Scopus SNIP (Source Normalised Impact per Paper): 2017 = 0.142
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back