Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs

Karolina Okrasa , Paweł Rzążewski


For graphs G and H, a homomorphism from G to H is an edge-preserving mapping from the vertex set of G to the vertex set of H. For a fixed graph H, by Hom(H) we denote the computational problem which asks whether a given graph G admits a homomorphism to H. If H is a complete graph with k vertices, then Hom(H) is equivalent to the k-Coloring problem, so graph homomorphisms can be seen as generalizations of colorings. It is known that Hom(H) is polynomial-time solvable if H is bipartite or has a vertex with a loop, and NP-complete otherwise [Hell and Nešetřil, JCTB 1990]. In this paper we are interested in the complexity of the problem, parameterized by the treewidth of the input graph G. If G has n vertices and is given along with its tree decomposition of width tw(G), then the problem can be solved in time |V (H)|tw(G) · nO(1), using a straightforward dynamic programming. We explore whether this bound can be improved. We show that if H is a projective core, then the existence of such a faster algorithm is unlikely: assuming the Strong Exponential Time Hypothesis (SETH), the Hom(H) problem cannot be solved in time (|V (H)| − ε)tw(G) · nO(1), for any ε > 0. This result provides a full complexity characterization for a large class of graphs H, as almost all graphs are projective cores. We also notice that the naive algorithm can be improved for some graphs H, and show a complexity classification for all graphs H, assuming two conjectures from algebraic graph theory. In particular, there are no known graphs H which are not covered by our result. In order to prove our results, we bring together some tools and techniques from algebra and from fine-grained complexity.

Author Karolina Okrasa - [University of Warsaw, Institute of Informatics]
Karolina Okrasa,,
- University of Warsaw, Institute of Informatics
, Paweł Rzążewski (FMIS / DIPS)
Paweł Rzążewski,,
- Department of Information Processing Systems
Publication size in sheets0.6
Book Chawla Shuchi (eds.): Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2020, Society for Industrial and Applied Mathematics, [978-1-61197-599-4]
Keywords in Polishdrobnoziarnista złożoność, homomorfizm grafów
Keywords in Englishfine-grained complexity, graph homomorphism
Abstract in PolishW pracy analizujemy złożoność problemu znajdowania homomorfizmu w ustalony graf H, parametryzowaną przez szerokość drzewową grafu G. Pokazujemy nieoczekiwany związek tego problemu z pewnymi zagadnieniami z algebraicznej teorii grafów.
Languageen angielski
Score (nominal)200
Score sourceconferenceList
ScoreMinisterial score = 200.0, 13-07-2020, ChapterFromConference
Publication indicators Scopus Citations = 0
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?