Parallel Simulation of Adaptive Random Boolean Networks

Kirill Kuvshinov , Klavdiya Bochenina , Piotr Górski , Janusz Hołyst


A random Boolean network (RBN) is a generic model of interactions between entities with binary states that has applications in different fields. As real-world systems often operate on the border between order and chaos, algorithms simulating RBN's transition to a critical state are of particular interest. Adaptive RBNs (ARBNs) can evolve towards such a state by rewiring of nodes according to their states on the attractor. Numerical simulation of ARBNs larger than several dozens of nodes is computationally hard due to an enormous growth of attractor lengths and transient periods. In this paper, we propose a GPGPU algorithm for parallel simulation of ARBNs with modified activity-dependent rewiring rule which can be used with any sequential algorithm for attractor's search. In the experimental part of the study, we investigate the performance of parallel implementation and the influence of parameters of the algorithm on the speed of convergence to a steady state.
Publication typeOriginal work published as abstract
Author Kirill Kuvshinov
Kirill Kuvshinov,,
, Klavdiya Bochenina
Klavdiya Bochenina,,
, Piotr Górski PFENS
Piotr Górski,,
- Center of Physics in Economics and Social Sciences
, Janusz Hołyst PFENS
Janusz Hołyst,,
- Center of Physics in Economics and Social Sciences
Journal seriesProcedia Computer Science, ISSN 1877-0509
Issue year2016
Publication size in sheets0.5
Keywords in Polishbrak
Keywords in Englishadaptive random Boolean networks; GPGPU algorithm; parallel simulation
Abstract in Polishbrak
Languageen angielski
Pararell simulation.pdf / 732.86 KB / Pararell simulation.pdf 732.86 KB
Score (nominal)0
ScoreMinisterial score = 0.0, 28-11-2017, ArticleFromJournal
Ministerial score (2013-2016) = 5.0, 28-11-2017, ArticleFromJournal - czasopismo zagraniczne spoza list
Citation count*1 (2018-02-22)
Share Share

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.