Effect of sonication reactor geometry on cell disruption and protein release from yeast cells

Jerzy Robert Bałdyga , Magdalena Jasińska , Magdalena Dzięgielewska , Monika Żochowska


The measured rate of release of intercellular protein from yeast cells by ultrasonication was applied for evaluating the effects of sonication reactor geometry on cell disruption rate and for validation of the simulation method. Disintegration of two strains of Saccharomyces cerevisiae has been investigated experimentally using a batch sonication reactor equipped with a horn type sonicator and an ultrasonic processor operating at the ultrasound frequency of 20 kHz. The results have shown that the rate of release of protein is directly proportional to the frequency of the emitter surface and the square of the amplitude of oscillations and strongly depends on the sonication reactor geometry. The model based on the Helmholtz equation has been used to predict spatial distribution of acoustic pressure in the sonication reactor. Effects of suspension volume, horn tip position, vessel diameter and amplitude of ultrasound waves on the spatial distribution of pressure amplitude have been simulated. A strong correlation between the rate of protein release and the magnitude of acoustic pressure and its spatial distribution has been observed. This shows that modeling of acoustic pressure is useful for optimization of sonication reactor geometry.
Author Jerzy Robert Bałdyga (FCPE / DCRED)
Jerzy Robert Bałdyga,,
- Department of Chemical Reactor Engineering and Dynamics
, Magdalena Jasińska (FCPE / DCRED)
Magdalena Jasińska,,
- Department of Chemical Reactor Engineering and Dynamics
, Magdalena Dzięgielewska
Magdalena Dzięgielewska,,
, Monika Żochowska
Monika Żochowska,,
Journal seriesChemical and Process Engineering , [Inżynieria Chemiczna i Procesowa], ISSN 0208-6425, (A 15 pkt)
Issue year2018
Publication size in sheets0.7
Keywords in Englishcell disruption, protein release, Saccharomyces cerevisiae, ultrasonication yeast
ASJC Classification1500 General Chemical Engineering; 1600 General Chemistry
URL http://journals.pan.pl/dlibra/publication/124973/edition/109017/content
Languageen angielski
Bałdyga J.R. (i in.) - Effect of sonication....pdf of 31-01-2019
8.93 MB
Score (nominal)15
ScoreMinisterial score = 15.0, 23-09-2019, ArticleFromJournal
Publication indicators Scopus SNIP (Source Normalised Impact per Paper): 2017 = 0.701; WoS Impact Factor: 2017 = 0.892 (2) - 2017=0.894 (5)
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?