A Review of Self‐Healing Concrete for Damage Management of Structures

N. De Belie , E. Gruyaert , A. Al-Tabbaa , P. Antonaci , C. Baera , D. Bajare , A. Darquennes , R. Davies , L. Ferrara , T. Jefferson , C. Litina , B. Miljevic , A. Otlewska , J. Ranogajec , M. Roig‐Flores , K. Paine , Paweł Łukowski , P. Serna , J-M. Tulliani , S. Vucetic , J. Wang , H.M. Jonkers


The increasing concern for safety and sustainability of structures is calling for the development of smart self‐healing materials and preventive repair methods. The appearance of small cracks (<300 µm in width) in concrete is almost unavoidable, not necessarily causing a risk of collapse for the structure, but surely impairing its functionality, accelerating its degradation, and diminishing its service life and sustainability. This review provides the state‐of‐the‐art of recent developments of self‐healing concrete, covering autogenous or intrinsic healing of traditional concrete followed by stimulated autogenous healing via use of mineral additives, crystalline admixtures or (superabsorbent) polymers, and subsequently autonomous self‐healing mechanisms, i.e. via, application of micro‐, macro‐, or vascular encapsulated polymers, minerals, or bacteria. The (stimulated) autogenous mechanisms are generally limited to healing crack widths of about 100–150 µm. In contrast, most autonomous self‐healing mechanisms can heal cracks of 300 µm, even sometimes up to more than 1 mm, and usually act faster. After explaining the basic concept for each self‐healing technique, the most recent advances are collected, explaining the progress and current limitations, to provide insights toward the future developments. This review addresses the research needs required to remove hindrances that limit market penetration of self‐healing concrete technologies.
Author N. De Belie - [Universiteit Gent]
N. De Belie,,
, E. Gruyaert - [KU Leuven]
E. Gruyaert,,
, A. Al-Tabbaa - [University of Cambridge]
A. Al-Tabbaa,,
, P. Antonaci - [Politecnico di Torino]
P. Antonaci,,
, C. Baera - [Research Institute for Construction Development]
C. Baera,,
, D. Bajare - [Riga Technical University]
D. Bajare,,
, A. Darquennes - [INSA Rennes]
A. Darquennes,,
, R. Davies - [Cardiff University]
R. Davies,,
, L. Ferrara - [Politecnico di Milano]
L. Ferrara,,
, T. Jefferson - [Cardiff University]
T. Jefferson,,
et al.`
Journal seriesAdvanced Materials Interfaces, ISSN 2196-7350, (A 35 pkt)
Issue year2018
Publication size in sheets0.5
Keywords in Englishself‐healing concrete, smart self‐healing materials, preventive repair methods, small cracks
ASJC Classification2210 Mechanical Engineering; 2211 Mechanics of Materials
URL https://doi.org/10.1002/admi.201800074
Languageen angielski
Score (nominal)35
Score sourcejournalList
ScoreMinisterial score = 35.0, 09-01-2020, ArticleFromJournal
Publication indicators WoS Citations = 4; Scopus Citations = 26; Scopus SNIP (Source Normalised Impact per Paper): 2018 = 0.836; WoS Impact Factor: 2018 = 4.713 (2) - 2018=4.722 (5)
Citation count*50 (2019-12-22)
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?