Development of a conductive biocomposite combining graphene and amniotic membrane for replacement of the neuronal network of tissue-engineered urinary bladder

J. Adamowicz , Iwona Pasternak , T. Kloskowski , M. Gniadek , S. Van Breda , M. Buhl , D. Balcerczyk , M. Gagat , D. Grzanka , Włodzimierz Strupiński , M. Pokrywczynska , T. Drewa


Tissue engineering allows to combine biomaterials and seeded cells to experimentally replace urinary bladder wall. The normal bladder wall however, includes branched neuronal network propagating signals which regulate urine storage and voiding. In this study we introduced a novel biocomposite built from amniotic membrane (Am) and graphene which created interface between cells and external stimuli replacing neuronal network. Graphene layers were transferred without modifying Am surface. Applied method allowed to preserve the unique bioactive characteristic of Am. Tissue engineered constructs composed from biocomposite seeded with smooth muscle cells (SMC) derived from porcine detrusor and porcine urothelial cells (UC) were used to evaluate properties of developed biomaterial. The presence of graphene layer significantly increased electrical conductivity of biocomposite. UCs and SMCs showed an organized growth pattern on graphene covered surfaces. Electrical filed stimulation (EFS) applied in vitro led additionally to increased SMCs growth and linear arrangement. 3D printed chamber equipped with 3D printed graphene based electrodes was fabricated to deliver EFS and record pressure changes caused by contracting SMCs seeded biocomposite. Observed contractile response indicated on effective SMCs stimulation mediated by graphene layer which constituted efficient cell to biomaterial interface.

Author J. Adamowicz - [Ludwik Rydygier Collegium Medicum in Bydgoszcz]
J. Adamowicz,,
, Iwona Pasternak (FP / SRD)
Iwona Pasternak,,
- Structural Research Division
, T. Kloskowski - [Ludwik Rydygier Collegium Medicum in Bydgoszcz]
T. Kloskowski,,
, M. Gniadek - [University of Science and Technology]
M. Gniadek,,
, S. Van Breda - [University of Basel, Institute for Medical Microbiology]
S. Van Breda,,
, M. Buhl - [Ludwik Rydygier Collegium Medicum in Bydgoszcz]
M. Buhl,,
, D. Balcerczyk - [Ludwik Rydygier Collegium Medicum in Bydgoszcz]
D. Balcerczyk,,
, M. Gagat - [Ludwik Rydygier Collegium Medicum in Bydgoszcz]
M. Gagat,,
, D. Grzanka - [Ludwik Rydygier Collegium Medicum in Bydgoszcz]
D. Grzanka,,
, Włodzimierz Strupiński (FP / SRD)
Włodzimierz Strupiński,,
- Structural Research Division
et al.`
Journal seriesScientific Reports, ISSN 2045-2322
Issue year2020
ASJC Classification1000 Multidisciplinary
Languageen angielski
Score (nominal)140
Score sourcejournalList
ScoreMinisterial score = 140.0, 02-09-2020, ArticleFromJournal
Publication indicators Scopus Citations = 1; WoS Citations = 1; GS Citations = 1.0; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 1.401; WoS Impact Factor: 2018 = 4.011 (2) - 2018=4.525 (5)
Citation count*1 (2020-09-13)
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?