A characterization of domains of holomorphy by means of their weighted Skwarczyński distance

Zbigniew Pasternak-Winiarski , Paweł Wójcicki


M. Skwarczyński (†) introduced pseudodistance on domains in Cn which under some conditions (if the domain is bounded for instance) gives rise to biholomorphically invariant distance, i.e., invariant under biholomorphic transformations. One can find a proof that completeness with respect to Skwarczyński distance implies completeness with respect to Bergman distance, which implies that the considered domain is a domain of holomorphy. In this paper we give a characterization of domains of holomorphy with the help of a weighted version of Skwarczyński pseudodistance. We will work with a special kind of weights, called “admissible weights”. Midway, we obtain a new proof (even in the unweighted case) of the theorem that the so-called Kobayashi condition implies Bergman completeness, which may be helpful in answering the (open) question if Bergman completeness and Skwarczyśnki completeness are equivalent or not.
Author Zbigniew Pasternak-Winiarski ZSMPW
Zbigniew Pasternak-Winiarski,,
- Department of Structural Methods for Knowledge Processing
, Paweł Wójcicki WMiNI
Paweł Wójcicki,,
- Faculty of Mathematics and Information Science
Publication size in sheets0.5
Book Kielanowski Piotr, Ali S. Twareque, Bieliavsky Pierre, Odzijewicz Anatol, Schlichenmaier Martin, Voronov Theodore (eds.): GEOMETRIC METHODS IN PHYSICS, Trends in Mathematics, vol. 6, 2016, SPRINGER INT PUBLISHING AG, ISBN 978-3-319-31755-7
Keywords in EnglishWeighted Bergman kernel, admissible weight, sequence of domains
Abstract in PolishW pracy przedstawiona została charakteryzacja obszarów holomorficzności przy pomocy ważonych jąder Bergmana. Dodatkowo, zestawienie dobrze znanych wyników pozwoliło uzyskać nowy dowód twierdzenia, że tzw. warunek Kobayashi implikuje zupełność w sensie Bergmana.
URL http://link.springer.com/chapter/10.1007%2F978-3-319-31756-4_29
Languageen angielski
Score (nominal)15
ScoreMinisterial score = 15.0, 27-06-2017, BookChapterSeriesAndMatConf
Ministerial score (2013-2016) = 15.0, 27-06-2017, BookChapterSeriesAndMatConf
Citation count*0
Share Share

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.