Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting
Authors:
- Ryszard Sitek,
- Maciej Szustecki,
- Łukasz Żrodowski,
- Bartłomiej Wysocki,
- Jakub Jaroszewicz,
- Paweł Wiśniewski,
- Jarosław Mizera
Abstract
Selective Laser Melting (SLM) is a manufacturing technique that is currently used for the production of functional parts that are difficult to form by the traditional methods such as casting or CNC (Computer Numerical Control) cutting from a wide range of metallic materials. In our study, a mixture of commercially pure titanium (Ti) and 15% at. aluminum nitride (AlN) was Selective Laser Melted to form three-dimensional objects. The obtained 4 mm edge cubes with an energy density that varied from 70 to 140 J/mm3 were examined in terms of their microstructure, chemical and phase composition, porosity, and Vickers microhardness. Scanning Electron Microscopy (SEM) observations of the etched samples showed inhomogeneities in the form of pores and unmelted and partly melted AlN particles in the fine-grained dendritic matrix, which is typical for titanium nitrides and titanium aluminum nitrides. The AlN particles remained unmelted in samples, but no porosity was observed in the interface area between them and the dendritic matrix. Additionally, samples fabricated with the presintering step had zones with different sizes of dendrites, suggesting a differing chemical composition of the matrix and the possibility of the formation of the phases forming an Ti–Al–N ternary system. The chemical composition in the microareas of the samples was determined using Energy Dispersive X-Ray Spectroscopy (EDS) and revealed differences in the homogeneity of the samples depending on the SLM process parameters and the additional presintering step. The phase composition, examined using X-ray Diffraction analysis (XRD), showed that samples were formed from Ti, TiN, and AlN phases. Porosity tests carried out using a computer microtomography revealed porosities in a range from 7% to 17.5%. The formed material was characterized by a relatively high hardness exceeding 700 HV0.2 over the entire cross-section, which depended on the manufacturing conditions.
- Record ID
- WUT548ec5d2865f4068bf5fa4e3ef43d21a
- Author
- Journal series
- Materials, ISSN 1996-1944
- Issue year
- 2020
- Vol
- 13
- No
- 10
- Pages
- 1-13
- Keywords in English
- Ti–AlN composite; microstructure; SEM; Selective Laser Melting (SLM)
- ASJC Classification
- DOI
- DOI:10.3390/ma13102218 Opening in a new tab
- URL
- https://www.mdpi.com/1996-1944/13/10/2218 Opening in a new tab
- Language
- (en) English
- License
- File
-
- File: 1
- Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting, File materials-13-02218-v3.pdf / 5 MB
- materials-13-02218-v3.pdf
- publication date: 08-06-2020
- Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting, File materials-13-02218-v3.pdf / 5 MB
-
- Score (nominal)
- 140
- Score source
- journalList
- Score
- = 140.0, 30-04-2022, ArticleFromJournal
- Publication indicators
- = 3; = 1; = 4; : 2017 = 1.285; : 2018 (2 years) = 2.972 - 2018 (5 years) =3.532
- Citation count
- 4
- Uniform Resource Identifier
- https://repo.pw.edu.pl/info/article/WUT548ec5d2865f4068bf5fa4e3ef43d21a/
- URN
urn:pw-repo:WUT548ec5d2865f4068bf5fa4e3ef43d21a
* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or PerishOpening in a new tab system.