Biological phase sample study using variational Hilbert imaging technique

Maria Cywińska , Maciej Trusiak , Krzysztof Patorski


Quantitative phase imaging (QPI) measurement is achieved by interference, e.g., in digital holographic microscopy and interference microscopy, where the fringe pattern (hologram/interferogram) phase distribution stores information about the refractive index structure of studied transparent biological samples. In this contribution we report the base for new endto-end QPI computational technique named the Variational Hilbert Imaging (VHI). It can be divided into two steps: hologram filtration using modified variational image decomposition (mVID) approach and phase map (sample-induced optical path delay) extraction using the Hilbert spiral transform (HST). The mVID employs new denoising approach and reliable criterion for determination of the end of calculations with careful investigation of proper parameter values. Quality of obtained results is therefore significantly increased ensuring acceleration and automation of calculations combined with remarkable robustness to different strongly varying hologram characteristics, i.e., local fringe period and orientation, background intensity, contrast deteriorations and noise. Additionally the HST makes it possible to retrieve phase from single hologram, even in case of closed fringes, providing efficient means for biological events characterization in dynamic regime. The VHI algorithm enables analysis of variety of biological samples without user’s meddling and loss of the accuracy. It is an important step to simplify optical measurement of complicated and fragile biological samples. Investigated VHI algorithm is tested on simulated and experimental data (i.e., swine spermatozoon). Phase decoding results are compared with reference algorithms, i.e., the Hilbert-Huang and Fourier transforms. Versatility of the proposed method and its potentially ubiquitous applications in full-field optical metrology are highlighted.
Author Maria Cywińska (FM / IMPh)
Maria Cywińska,,
- The Institute of Micromechanics and Photonics
, Maciej Trusiak (FM / IMPh)
Maciej Trusiak,,
- The Institute of Micromechanics and Photonics
, Krzysztof Patorski (FM / IMPh)
Krzysztof Patorski,,
- The Institute of Micromechanics and Photonics
Pages108872F-1 - 108872F-7
Publication size in sheets0.3
Book Popescu Gabriel, Park YongKeun (eds.): Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Proceedings of SPIE: The International Society for Optical Engineering, vol. 10887, 2019
Keywords in Englishquantitative phase imaging, interferometry, phase measurement, phase retrieval, phase imaging, variational image decomposition, Hilbert spiral transform, denoising
Languageen angielski
Score (nominal)5
Score sourcepublisherList
ScoreMinisterial score = 5.0, 01-01-2020, ChapterFromConference
Publication indicators WoS Citations = 1; Scopus SNIP (Source Normalised Impact per Paper) [Not active]: 2018 = 0.394
Citation count*1 (2020-04-15)
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?