k-Arithmetic Sequences - Theory and Applications

Adam Kołacz

Abstract

The notion of an arithmetic progression was extended to embrace the class of polynomials of degree k > 1. Some properties of difference sequences are analyzed and their connections with some numbertheory problems are studied. In particular, a certain aspects of Fermat’s Last Theorem and Fibonacci numbers are revisited.
Author Adam Kołacz (FMIS)
Adam Kołacz,,
- Faculty of Mathematics and Information Science
Pages37-56
Publication size in sheets0.95
Book Challenging Problems and Solutions in Intelligent Systems, Studies in Computational Intelligence, vol. 634, 2016, ISBN 978-3-319-30164-8
Keywords in Englisharithmetic progression, difference sequence, polynomials, Fibonacci numbers
ASJC Classification1702 Artificial Intelligence
Abstract in PolishPojęcie ciągu arytmetycznego zostało rozszerzone tak, aby objąć klasę wielomianów stopnia k > 1. Ponadto przeanalizowane zostały pewne własności ciągów różnicowych oraz ich związki z niektórymi problemami teorio-liczbowymi. W szczególności przedstawiono nowe wyniki związane z Wielkim Twierdzeniem Fermata oraz liczbami Fibonacciego.
DOIDOI:10.1007/978-3-319-30165-5_3
URL http://link.springer.com/chapter/10.1007/978-3-319-30165-5_3
Languageen angielski
Score (nominal)0
ScoreMinisterial score = 0.0, 10-09-2019, MonographChapterAuthor
Publication indicators WoS Citations = 0; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 0.376
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?