Synchronization among spin-wave amplitudes in chaotic nonlinear ferromagnetic resonance

Andrzej Krawiecki


A model of chaos in high-power ferromagnetic resonance in coincidence regime, based on three-magnon interactions of the uniform mode with a group of pairs of parametric spin waves, is investigated numerically. The results are interpreted from the point of view of chaotic synchronization theory. If all spin waves are identical, all of them are excited above the first-order Suhl instability threshold and in the chaotic regime their amplitudes show marginal synchronization, i.e. they differ only by a multiplicative factor, constant in time. If spin waves have slightly different instability thresholds, only one or few of them are excited. In the latter case, addition of weak thermal noise changes the results qualitatively. For low rf field amplitude, but above the threshold for chaos, still only few spin-wave pairs are excited above the thermal level. For higher rf field amplitude all spin waves in the group are excited, and their amplitudes are not synchronized. These results suggest that low correlation dimension of chaotic attractors, observed often in nonlinear ferromagnetic resonance, can be connected with chaotic synchronization among spin-wave amplitudes, in particular just above the threshold for chaos.
Author Andrzej Krawiecki (FP / PCSD)
Andrzej Krawiecki,,
- Physics of Complex Systems Divison
Journal seriesActa Physica Polonica A, ISSN 0587-4246
Issue year2000
ASJC Classification3100 General Physics and Astronomy
Score (nominal)15
Score sourcejournalList
Publication indicators WoS Citations = 2; GS Citations = 2.0; Scopus SNIP (Source Normalised Impact per Paper): 2000 = 0.348; WoS Impact Factor: 2006 = 0.371 (2) - 2007=0.37 (5)
Citation count*2 (2015-04-02)
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?