The spin-dependent structure function g1(x) of the proton from polarized deep-inelastic muon scattering

B Adeva , E. Arik , A. Arvidson , B. Badelek , G. Bardin , G. Baum , P. Berglund , L. Betev , R. Birsa , N. Botton , F. Bradamante , A. Bravar , A. Bressan , S. Bültmann , E. Burtin , D. Crabb , J. Cranshaw , T. Çuhadar , S. Dalla Torre , R. Dantzig , B. Derro , A. Deshpande , S. Dhawan , C. Dulya , S. Eichblatt , D. Fasching , F. Feinstein , C. Fernandez , S. Forthmann , B. Frois , A. Gallas , J.A. Garzon , H. Gilly , M. Giorgi , S. Goertz , G. Gracia , N. Groot , K. Haft , D. Harrach , T. Hasegawa , P. Hautle , N. Hayashi , C.A. Heusch , N. Horikawa , V.W. Hughes , G. Igo , S. Ishimoto , T. Iwata , E.M. Kabuß , T. Kageya , A. Karev , T.J. Ketel , J. Kiryluk , Yu. Kisselev , V. Krivokhijine , W. Kröger , V. Kuktin , K Kurek , J. Kyynäräinen , M. Lamanna , U. Landgraf , J.M. Le Goff , F. Lehar , A. Lesquen , J. Lichtenstadt , M. Litmaath , A. Magnon , G.K. Mallot , F. Marie , A. Martin , J. Martino , T. Matsuda , B. Mayes , J.S. McCarthy , K. Medved , W. Meyer , G. Middelkoop , D. Miller , Y. Miyachi , K. Mori , J. Moromisato , J. Nassalski , L. Naumann , T.O. Niinikoski , J.E.J. Oberski , A. Ogawa , M. Perdekamp , H. Pereira , F. Perrot-Kunne , D. Peshekhonov , L. Pinsky , S. Platchkov , M. Plo , D. Pose , H. Postma , J. Pretz , R. Puntaferro , G. Rädel , A. Rijllart , G. Reicherz , M. A Callejo-Rodriguez , E Rondio , B. Roscherr , I. Sabo , J. Saborido , A. Sandacz , I. Savin , P. Schiavon , A. Schiller , E.P. Sichtermann , F. Simeoni , G.I. Smirnov , A. Staude , A. Steinmetz , U. Stiegler , H. Stuhrmann , Michał Szleper , F Tessarotto , D. Thers , W. Tlaczala , A. Tripet , G. Unel , M. Velasco , J. Vogt , R. Voss , C. Whitten , R Windmolders , W Wiślicki , A. Witzmann , J. Ylöstalo , A.M. Zanetti , Krzysztof Zaremba

Abstract

We present a new measurement of the virtual photon proton asymmetry A1p from deep inelastic scattering of polarized muons on polarized protons in the kinematic range 0.0008 \< x \< 0.7 and 0.2 \< Q2 \< 100 GeV2. With this, the statistical uncertainty of our measurement has improved by a factor of 2 compared to our previous measurements. The spin-dependent structure function g1p is determined for the data with Q2 \> 1 GeV2. A perturbative QCD evolution in next-to-leading order is used to determine g1p(x) at a constant Q2. At Q2 = 10 GeV2 we find, in the measured range, ∫0.0030.7g1P(x)dx=0.139±0.006 (stat) ±0.008 (syst) ±0.006(evol). The value of the first moment Г1P= ∫01g1p(x)d x of g1p depends on the approach used to describe the behaviour of g1p at low x. We find that the Ellis-Jaffe sum rule is violated. With our published result for Γ1d we confirm the Bjorken sum rule with an accuracy of ≈ 15\% at the one standard deviation level.
Author B Adeva - [Universidad de Santiago de Compostela]
B Adeva,,
-
-
, E. Arik - [Istanbul Teknik Üniversitesi]
E. Arik,,
-
-
, A. Arvidson - [Uppsala Universitet]
A. Arvidson,,
-
-
, B. Badelek - [Uppsala Universitet]
B. Badelek,,
-
-
, G. Bardin - [CEA Saclay]
G. Bardin,,
-
-
, G. Baum - [Universitat Bielefeld]
G. Baum,,
-
-
, P. Berglund - [Aalto University]
P. Berglund,,
-
-
, L. Betev - [Ludwig-Maximilians-Universität München]
L. Betev,,
-
-
, R. Birsa - [Universita degli Studi di Trieste]
R. Birsa,,
-
-
, N. Botton
N. Botton,,
-
et al.`
Journal seriesPhysics Letters B, ISSN 0370-2693
Issue year1997
Vol412
No3–4
Pages414-424
ASJC Classification3106 Nuclear and High Energy Physics
DOIDOI:10.1016/S0370-2693(97)01106-4
URL http://www.sciencedirect.com/science/article/pii/S0370269397011064
Languageen angielski
Score (nominal)40
Score sourcejournalList
Publication indicators Scopus Citations = 95; WoS Citations = 94; GS Citations = 191.0; Scopus SNIP (Source Normalised Impact per Paper): 1999 = 1.481; WoS Impact Factor: 2006 = 5.043 (2) - 2007=3.656 (5)
Citation count*191 (2020-06-07)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?