A line-shape analysis for spin-1 NMR signals

C. Dulya , D. Adams , B Adeva , E. Arik , A. Arvidson , B. Badelek , M.K. Ballintijn , D. Bardin , G. Bardin , G. Baum , P. Berglund , L. Betev , I.G. Bird , R. Birsa , P. Björkholm , B.E. Bonner , N. Botton , M. Boutemeur , F. Bradamante , A. Bressan , S. Bültmann , E. Burtin , C. Cavata , D. Crabb , J. Cranshaw , T. Çuhadar , S. Dalla Torre , R. Dantzig , B. Derro , A. Deshpande , S. Dhawan , A. Dyring , S. Eichblatt , J.C. Faivre , D. Fasching , F. Feinstein , C. Fernandez , B. Frois , A. Gallas , J.A. Garzon , T. Gaussiran , R. Gehring , M. Giorgi , E. Goeler , St. Goertz , F. Gomez , G. Gracia , N. Groot , M. Grosse Perdekamp , E. Gülmez , J. Harmsen , D. Harrach , T. Hasegawa , P. Hautle , N. Hayashi , C.A. Heusch , N. Horikawa , V.W. Hughes , G. Igo , S. Ishimoto , T. Iwata , E.M. Kabuß , T. Kageya , L. Kalinovskaya , A. Karev , H.J. Kessler , T.J. Ketel , A. Kishi , Yu. Kisselev , L. Klostermann , D. Krämer , V. Krivokhijine , W. Kröger , V. Kukhtin , K Kurek , J. Kyynäräinen , M. Lamanna , U. Landgraf , J.M. Le Goff , F. Lehar , A. Lesquen , J. Lichtenstadt , T. Lindqvist , M. Litmaath , M. Lowe , A. Magnon , G.K. Mallot , F. Marie , A. Martin , J. Martino , T. Matsuda , B. Mayes , J.S. McCarthy , K. Medved , W. Meyer , G. Middelkoop , D. Miller , K. Mori , J. Moromisato , A. Nagaitsev , J. Nassalski , L. Naumann , T.O. Niinikoski , J.E.J. Oberski , A. Ogawa , C. Ozben , D.P. Parks , F. Perrot-Kunne , D. Peshekhonov , R. Piegaia , L. Pinsky , S. Platchkov , M. Plo , D. Pose , H. Postma , J. Pretz , T. Pussieux , J. Pyrlik , G. Reicherz , I. Reyhancan , A. Rijllart , J.B. Roberts , S. Rock , M. A Callejo-Rodriguez , E Rondio , A. Rosado , I. Sabo , J. Saborido , A. Sandacz , I. Savin , P. Schiavon , K.P. Schüler , R. Segel , R. Seitz , Y. Semertzidis , F. Sever , P. Shanahan , E.P. Sichtermann , F. Simeoni , G.I. Smirnov , A. Staude , A. Steinmetz , U. Stiegler , H. Stuhrmann , Michał Szleper , K.M. Teichert , F Tessarotto , W. Tlaczala , A. Tripet , G. Unel , M. Velasco , J. Vogt , R. Voss , R. Weinstein , C. Whitten , R Windmolders , R. Willumeit , W Wiślicki , A. Witzmann , A. Yañez , J. Ylöstalo , A.M. Zanetti , Krzysztof Zaremba , J Zhao

Abstract

An analytic model of the deuteron absorption function has been developed and is compared to experimental NMR signals of deuterated butanol obtained at the SMC experiment in order to determine the deuteron polarization. The absorption function model includes dipolar broadening and a frequency-dependent treatment of the intensity factors. The high-precision TE signal data available are used to adjust the model for Q-meter distortions and dispersion effects. Once the Q-meter adjustment is made, the enhanced polarizations determined by the asymmetry and TE-calibration methods compare well within the accuracy of each method. In analyzing the NMR signals, the quadrupolar coupling constants could be determined for both the CD and the OD bonds of deuterated butanol.
Author C. Dulya - [University of California, Los Angeles]
C. Dulya,,
-
-
, D. Adams - [Rice University]
D. Adams,,
-
-
, B Adeva - [Universidad de Santiago de Compostela]
B Adeva,,
-
-
, E. Arik - [Cekmece Nuclear Research and Training Center]
E. Arik,,
-
-
, A. Arvidson - [Uppsala Universitet]
A. Arvidson,,
-
-
, B. Badelek - [Uppsala Universitet]
B. Badelek,,
-
-
, M.K. Ballintijn - [Delft University of Technology]
M.K. Ballintijn,,
-
-
, D. Bardin - [Institut für Hochenergiephysik]
D. Bardin,,
-
-
, G. Bardin - [CEA Saclay]
G. Bardin,,
-
-
, G. Baum - [Universitat Bielefeld]
G. Baum,,
-
-
et al.`
Journal seriesNuclear Instruments & Methods in Physics Research Section A Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002
Issue year1997
Vol398
No2–3
Pages109-125
ASJC Classification3105 Instrumentation; 3106 Nuclear and High Energy Physics
DOIDOI:10.1016/S0168-9002(97)00317-3
URL http://www.sciencedirect.com/science/article/pii/S0168900297003173
Languageen angielski
Score (nominal)25
Score sourcejournalList
Publication indicators Scopus Citations = 20; WoS Citations = 16; GS Citations = 34.0; Scopus SNIP (Source Normalised Impact per Paper): 2014 = 1.303; WoS Impact Factor: 2006 = 1.185 (2) - 2007=1.189 (5)
Citation count*37 (2020-08-23)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?