Influence of interference effects on thermoelectric properties of double quantum dots

M. Wierzbicki , Renata Świrkowicz

Abstract

Electron and thermal transport through a double quantum dot/artificial molecule is studied theoretically in the linear response regime with use of Green function formalism. Gradually changing the system geometry from the configuration in series toward parallel ones, we demonstrate interplay between interference processes and thermoelectric effects. If the tunnelling through the antibonding state is progressively reduced, electronic-thermal conductance exhibits features typical for Fano effect with a well-pronounced antiresonance, in which position and intensity depend on the system geometry. Moreover, there is a possibility to manipulate the conductance using an external magnetic field. Thermopower and thermoelectric efficiency, described by the dimensionless figure of merit (FOM) ZT, significantly increase because of interference effects. Interdot Coulomb interaction, described by the parameter U, strongly influences thermoelectric properties. Optimal conditions toward thermoelectricity with high ZT can by fulfilled for relatively strong correlation U. However, dramatic changes can be observed in the region of small U, where efficiency is very low. Because in double dots the interdot electrostatic interaction can be varied in a controlled way, the resonant enhancement of efficiency can be attained.
Author M. Wierzbicki
M. Wierzbicki,,
-
, Renata Świrkowicz ZBS
Renata Świrkowicz,,
- Structural Research Division
Journal seriesPhysical Review B, ISSN 1098-0121
Issue year2011
Vol84
No7
Pages075410
DOIDOI:10.1103/PhysRevB.84.075410
URL http://link.aps.org/doi/10.1103/PhysRevB.84.075410
Score (nominal)35
Publication indicators WoS Impact Factor [Impact Factor WoS]: 2011 = 3.691 (2) - 2011=3.405 (5)
Citation count*33 (2015-02-04)
Cite
Share Share

Get link to the record
msginfo.png


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back