Neural networks for solving linear inequality systems

A Cichocki , A. Bargiela

Abstract

In this paper a neural network approach to the on-line solution of linear inequality systems is considered. Three different techniques are discussed and for each technique a novel neural network implementation is proposed. The first technique is a standard penalty method implemented as an analog neural network. The second technique is based on the transformation of inequality constraints into equality constraints with simple bounds on the variables. The transformed problem is then solved using least squares (LS) and least absolute values (LAV) optimisation criteria. The third technique makes use of the regularised total least squares criterion (RTLS). For each technique a suitable neural network architecture and associated algorithm in the form of nonlinear differential equations has been developed. The validity and performance of the proposed algorithms has been verified by computer simulation experiments. The analog neural networks are deemed to be particularly well suited for high throughput, real time applications.
Author A Cichocki (FEIT / RE)
A Cichocki,,
- The Institute of Radioelectronics
, A. Bargiela
A. Bargiela,,
-
Journal seriesParallel Computing, ISSN 0167-8191
Issue year1997
Vol22
No11
Pages1455-1475
Keywords in EnglishAnalog neural networks, Linear inequality systems, parallel architectures, Stochastic gradient descent optimisation
DOIDOI:10.1016/S0167-8191(96)00065-8
URL http://www.sciencedirect.com/science/article/pii/S0167819196000658
Score (nominal)30
Publication indicators WoS Impact Factor: 2006 = 0.685 (2) - 2007=1.012 (5)
Citation count*23 (2014-02-08)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?