On the asymptotic behavior of the maximum number of spanning trees in circulant graphs

Zbigniew Lonc , Krzysztof Parol , Jacek Wojciechowski

Abstract

The following asymptotic estimation of the maximum number of spanning trees fk(n) in 2k-regular circulant graphs (k \\textgreater\ 1) on n vertices is the main result of this paper: fk(n) = ((2k)/(rk))n(1+o(1)), where\$r\_k = \\textbackslash\hboxexp\\textbackslash\left[\\textbackslash\sum\\textasciicircum\ınfty\_s=1 [1/(2s(2k)\\textasciicircum\2s)] \\textbackslash\left(\\textbackslash\matrix2s\\textbackslash\cr s\\textbackslash\cr\\textbackslash\right) \\textbackslash\sum\_j\_1+\\textbackslash\dots +j\_k=s \\textbackslash\left(\\textbackslash\matrixs\\textbackslash\cr j\_1,\\textbackslash\dots, j\_k\\textbackslash\cr\\textbackslash\right)\\textasciicircum\2 \\textbackslash\right].\$© 1997 John Wiley \& Sons, Inc. Networks 30:47–56, 1997
Author Zbigniew Lonc (FMIS / DAC)
Zbigniew Lonc,,
- Department of Algebra and Combinatorics
, Krzysztof Parol - [Warsaw University of Technology (PW)]
Krzysztof Parol,,
-
- Politechnika Warszawska
, Jacek Wojciechowski
Jacek Wojciechowski,,
-
Journal seriesNetworks, ISSN 1097-0037
Issue year1997
Vol30
No1
Pages47–56
DOIDOI:10.1002/(SICI)1097-0037(199708)30:1<47::AID-NET6>3.0.CO;2-L
URL http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0037(199708)30:1<47::AID-NET6>3.0.CO;2-L/abstract
Languageen angielski
Score (nominal)0
Score sourcejournalList
Publication indicators Scopus Citations = 7; WoS Citations = 6; GS Citations = 8.0
Citation count*8 (2015-03-10)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?