Reducing Number of Classifiers in DAGSVM Based on Class Similarity

Marcin Luckner

Abstract

Support Vector Machines are excellent binary classifiers. In case of multi–class classification problems individual classifiers can be collected into a directed acyclic graph structure DAGSVM. Such structure implements One-Against-One strategy. In this strategy a split is created for each pair of classes, but, because of hierarchical structure, only a part of them is used in the single classification process. The number of classifiers may be reduced if their classification tasks will be changed from separation of individual classes into separation of groups of classes. The proposed method is based on the similarity of classes. For near classes the structure of DAG stays immutable. For the distant classes more than one is separated with a single classifier. This solution reduces the classification cost. At the same time the recognition accuracy is not reduced in a significant way. Moreover, a number of SV, which influences on the learning time will not grow rapidly.
Author Marcin Luckner ZZIMN
Marcin Luckner,,
- Department of Applied Computer Science and Computation Methods
Pages514-523
Book Maino Giuseppe, Foresti Gian Luca (eds.): Image Analysis and Processing – ICIAP 2011, Lecture Notes In Computer Science, no. 6978, 2011, Springer Berlin Heidelberg, ISBN 978-3-642-24084-3, 978-3-642-24085-0
Keywords in EnglishAlgorithm Analysis and Problem Complexity, Artificial Intelligence (incl. Robotics), Classification, Computer Graphics, Directed Acyclic Graph, Image Processing and Computer Vision, One–Against–One, pattern recognition, support vector machines
URL http://link.springer.com/chapter/10.1007/978-3-642-24085-0_53
Score (nominal)3
Citation count*1 (2015-12-01)
Cite
Share Share



* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back