Penetration of monodisperse, singly charged nanoparticles through polydisperse fibrous filters

Albert Podgórski , Anne Maißer , Wladyslaw W. Szymanski , Anna Izabella Jackiewicz , Leon Gradoń

Abstract

The article presents experimental results and theoretical analysis of aerosol nanoparticle penetration through fibrous filters with a broad fiber diameter distribution. Four fibrous filters were produced using the melt-blown technique. The analysis of the filters’ SEM images indicated that they had log-normal fiber diameter distribution. Five kinds of proteins and two types of silica particles were generated by electrospraying and were then classified using a Parallel Differential Mobility Analyzer to obtain well-defined, monodisperse, singly charged challenge aerosols with diameters ranging from 6.3 to 27.2 nm. Particle penetration through the filters was determined using a water-based CPC. Experimental results were compared first with predictions derived from the classical theory of aerosol filtration. It is demonstrated that it is inappropriate to apply it to the arithmetic mean fiber diameter, as this results in turn in a huge underestimation of nanoparticle penetration. A better, but still unsatisfactory agreement is observed when that theory was used together with the pressure drop equivalent fiber diameter or when the Kirsch model of nonuniform fibrous media was applied. We show that the classical theory applied to any fixed fiber diameter predicts a stronger dependence of nanoparticle penetration on the Peclet number as compared to experimental data. All these observations were successfully explained by using our original partially segregated flow model that accounts for the filter fiber diameter distribution. It was found that the parameter of aerosol segregation intensity inside inhomogeneous filters increases with the increase in particle size, when the convective transport becomes more pronounced in comparison to the diffusive one.
Author Albert Podgórski KIPZ
Albert Podgórski,,
- Chair of Integrated Process Engineering
, Anne Maißer
Anne Maißer,,
-
, Wladyslaw W. Szymanski
Wladyslaw W. Szymanski,,
-
, Anna Izabella Jackiewicz KIPZ
Anna Izabella Jackiewicz,,
- Chair of Integrated Process Engineering
, Leon Gradoń KIPZ
Leon Gradoń,,
- Chair of Integrated Process Engineering
Journal seriesAerosol Science and Technology, ISSN 0278-6826
Issue year2011
Vol45
No2
Pages215-233
Publication size in sheets0.9
DOIDOI:10.1080/02786826.2010.531300
URL http://www.tandfonline.com/doi/abs/10.1080/02786826.2010.531300
Languageen angielski
File
Podgórski A. (i in.) - Penetration of monodisperse....pdf 1.09 MB
Score (nominal)35
Publication indicators WoS Impact Factor: 2011 = 2.667 (2) - 2011=2.925 (5)
Citation count*10 (2015-08-19)
Cite
Share Share

Get link to the record
msginfo.png


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back