Renormalized solutions in thermo-visco-plasticity for a Norton–Hoff type model. Part I: The truncated case

Krzysztof Chełmiński , Sebastian Owczarek


We prove existence of global in time strong solutions to the truncated thermo-visco-plasticity with an inelastic constitutive function of Norton–Hoff type. This result is a starting point to obtain renormalized solutions for the considered model without truncations. The method of our proof is based on Yosida approximation of the maximal monotone term and a passage to the limit.
Author Krzysztof Chełmiński (FMIS / DPDE)
Krzysztof Chełmiński,,
- Department of Partial Differential Equations
, Sebastian Owczarek (FMIS / DPDE)
Sebastian Owczarek,,
- Department of Partial Differential Equations
Journal seriesNonlinear Analysis-Real World Applications, ISSN 1468-1218
Issue year2016
Publication size in sheets0.6
Keywords in EnglishContinuum mechanics, Visco-plastic deformations, Heat conduction, Thermo-visco-plasticity, Renormalized solutions
ASJC Classification2604 Applied Mathematics; 2605 Computational Mathematics; 2000 General Economics, Econometrics and Finance; 2200 General Engineering; 2700 General Medicine; 2603 Analysis
Abstract in PolishDowodzimy istnienie globalnego w czasie rozwiązania dla “przyciętego” modelu termolepkoplastycznego, w którym niesprężysty związek konstytutywny jest typu Nortona - Hoffa. Rezultat ten jest punktem startowym do otrzymania rozwiązań zrenormalizowanych dla oryginalnego modelu termolepkoplastycznego.
Languageen angielski
Score (nominal)45
Score sourcejournalList
ScoreMinisterial score = 40.0, 02-02-2020, ArticleFromJournal
Ministerial score (2013-2016) = 45.0, 02-02-2020, ArticleFromJournal
Publication indicators WoS Citations = 3; Scopus Citations = 5; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 1.5; WoS Impact Factor: 2016 = 1.659 (2) - 2016=2.268 (5)
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?