Reactivity of Alcohols in Chemoselective Transfer Hydrogenation of Acrolein over Magnesium Oxide as the Catalyst

Marek Gliński , Urszula Ulkowska

Abstract

Abstract This paper presents the first full thermodynamic description of the hydrogen transfer between acrolein, the simplest α,β-unsaturated aldehyde, and a set of aliphatic alcohols, both primary and secondary. The vapour phase transfer hydrogenation of acrolein into allyl alcohol with various primary and secondary aliphatic alcohols used as hydrogen donors in the presence of MgO as the catalyst has been studied. Despite differentiated reactivity exhibited by these alcohols, a high chemoselectivity (\\textgreater\80\%) to allyl alcohol has been observed for all of them. On the basis of thermodynamic calculations it has been found that secondary alcohols as hydrogen donors are more reactive than primary ones. However, ethanol or butan-1-ol have shown the highest reactivity. In their presence yields of allyl alcohol higher than 60\% have been noted, which greatly exceed those predicted by thermodynamic calculations based on the following equation: acrolein + ethanol (butan-1-ol) → allyl alcohol + acetaldehyde (butyraldehyde). Although similar yields have been reported in literature, no subsequent nor side reactions have been discussed even though the attained yield cannot be accounted for by this reaction alone. As a possible explanation of the discrepancy the occurrence of a disregarded reaction, for which ΔG \\textless\ 0, has been considered. It has been shown that aldol condensation fulfills these thermodynamic requirements, however, the products of this reaction are noted only at the beginning of the process and the decrease of their amount does not influence the yield of allyl alcohol. Graphical Abstract
Author Marek Gliński (FC / DCOC)
Marek Gliński,,
- Department Of Catalysis And Organometallic Chemistry
, Urszula Ulkowska (FC)
Urszula Ulkowska,,
- Faculty of Chemistry
Journal seriesCatalysis Letters, ISSN 1011-372X, 1572-879X, (0 pkt)
Issue year2011
Vol141
No2
Pages293-299
Keywords in EnglishAcrolein, Allyl alcohol, Catalysis, chemoselectivity, hydrogen transfer, Industrial Chemistry/Chemical Engineering, Magnesia, Organometallic Chemistry, Physical Chemistry, Thermodynamics
DOIDOI:10.1007/s10562-010-0497-7
URL http://link.springer.com/article/10.1007/s10562-010-0497-7
Score (nominal)0
Score sourcejournalList
Publication indicators WoS Citations = 13
Citation count*6 (2015-02-24)
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?