Construction of Nash equilibrium based on multiple stopping problem in multi-person game

Anna Krasnosielska-Kobos

Abstract

We consider a multi-person stopping game with players’ priorities and multiple stopping. Players observe sequential offers at random or fixed times. Each player can obtain fixed number of rewards. For the game, we construct a Nash equilibrium. The construction is based on the solution of an optimal multiple stopping problem. A Pareto optimum of the game is given. It is also proved that the presented Nash equilibrium is a sub-game perfect Nash equilibrium. Moreover, the Nash equilibrium payoffs are unique. We also present new results related to multiple stopping problem
Author Anna Krasnosielska-Kobos (FMIS)
Anna Krasnosielska-Kobos,,
- Faculty of Mathematics and Information Science
Journal seriesMathematical Methods of Operations Research, ISSN 1432-2994, (A 25 pkt)
Issue year2016
Vol83
No1
Pages53-70
Publication size in sheets0.85
Keywords in EnglishStopping game, Nash equilibrium, Pareto-optimality, Sub-game perfect Nash equilibrium, Multiple stopping
ASJC Classification1803 Management Science and Operations Research; 2600 General Mathematics; 1712 Software
Abstract in PolishW artykule przedstawiono konstrukcję równowagi Nasha w grze wieloosobowej wykorzystującą optymalne momenty zatrzymania w problemie wielokrotnego stopowania. W grze tej każdy z graczy może otrzymać ustaloną liczbę wypłat. Udowodniono, jednoznaczność wypłat w równowadze Nasha w sformułowanej grze oraz pokazano, że zaproponowana strategia jest Pareto-optymalna. Dodatkowo udowodniono nowe twierdzenia dotyczące postaci rozszerzonych optymalnych momentów zatrzymania w problemie wielokrotnego stopowania.
DOIDOI:10.1007/s00186-015-0519-8
URL http://link.springer.com/article/10.1007%2Fs00186-015-0519-8
Languageen angielski
Score (nominal)25
ScoreMinisterial score = 20.0, 19-09-2019, ArticleFromJournal
Ministerial score (2013-2016) = 25.0, 19-09-2019, ArticleFromJournal
Publication indicators Scopus Citations = 3; WoS Citations = 1; Scopus SNIP (Source Normalised Impact per Paper): 2016 = 0.865; WoS Impact Factor: 2016 = 0.762 (2) - 2016=0.935 (5)
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?