PRACA DYPLOMOWA MAGISTERSKA

Tomasz Rudzki

Badania właściwości akustycznych mikroperforowanych ustrojów dźwiękochłonnych i ich zastosowanie do korekty akustycznej pomieszczeń

Kierujący pracą:

dr inż. Tadeusz Fidecki
prof. dr hab. inż. Zbigniew Kulka

Ocena: ...

Podpis Przewodniczącego
Komisji Egzaminu Dyplomowego
Specjalność: Radiokomunikacja i Techniki Multimedialne
Data urodzenia: 29.05.1985 r.
Data rozpoczęcia studiów: 23.02.2009 r.

Życiorys

Egzamin dyplomowy:
Złożył egzamin dyplomowy w dniu:
z wynikiem:...
Ogólny wynik studiów:..
Dodatkowe uwagi i wnioski Komisji:
..
..

2
Streszczenie

Investigation of acoustical properties of microperforated panel absorbers and their application in acoustic treatment of halls for speech and music

Abstract

Acoustical properties of transparent microperforated panel absorbers were investigated. These acoustic panels might be used in spaces where interior design is concerned. Absorption mechanism and theoretical model of absorption is presented. The model was implemented in software application allowing prediction of absorption coefficients of single and double layer microperforated panel absorbers. A series of measurements were performed to obtain and optimize absorption coefficient characteristics of microperforated panels. Properties of prototype panels were tested in historic interiors. Results confirm that microperforated panel absorbers may be useful in acoustic treatment of this kind of interiors.
Spis treści
1. Wprowadzenie .. 6
2. Właściwości akustyczne pomieszczeń .. 8
 2.1. Subiektywna ocena akustyki pomieszczeń ... 8
 2.2. Wskaźniki oceny właściwości akustycznych pomieszczeń .. 8
 2.3. Metody pomiarowe stosowane do wyznaczania wskaźników akustycznych
 pomieszczeń .. 11
3. Kształtowanie akustyki pomieszczeń .. 15
 3.1. Zastosowanie ustrojów dźwiękochłonnych do kształtowania akustyki 16
 3.1.1. Kształtowanie charakterystyki pogłosowej ... 16
 3.1.2. Kontrola rezonansów .. 17
 3.1.3. Redukcja odbić dźwięku .. 18
 3.2. Rodzaje ustrojów dźwiękochłonnych .. 18
 3.2.1. Ustroje porowate ... 18
 3.2.2. Ustroje rezonansowe ... 19
4. Ustroje mikroperforowane ... 20
 4.1. Wyznaczanie współczynnika pochłaniania dźwięku przez ustrój na podstawie jego
 impedancji akustycznej ... 20
 4.2. Wyznaczanie impedancji akustycznej mikroperforowanego ustrój
 dźwiękochłonnego ... 22
5. Badania ustrojów mikroperforowanych ... 26
 5.1. Cel i zakres badań .. 26
 5.2. Opis badanych próbek ... 26
 5.3. Modelowanie komputerowe właściwości mikroperforowanych ustrojów
 dźwiękochłonnych ... 28
 5.4. Pomiary właściwości akustycznych mikroperforowanych ustrojów
 dźwiękochłonnych ... 28
 5.4.1. Badania ustrojów mikroperforowanych umieszczonych przed powierzchnią
 odbijającą dźwięk ... 31
 5.4.2. Badania wpływu elementów rozpraszających znajdujących się między badanymi
 próbami ustrojów a powierzchnią odbijającą .. 32
 5.5. Wyniki badań ... 34
5.5.1. Wyniki modelowania komputerowego właściwości ustrojów mikroperforowanych ... 34
5.5.2. Wyniki pomiarów właściwości akustycznych ustrojów mikroperforowanych z odbicami dźwięku od powierzchni płaskiej .. 35
5.5.3. Wyniki pomiarów właściwości akustycznych ustrojów mikroperforowanych z rozpraszaniem dźwięku .. 39
5.6. Omówienie wyników ... 40
6. Projekt mobilnych paneli z mikroperforowanymi ustrojami dźwiękochłonnymi .43
7. Zastosowanie badanych ustrojów mikroperforowanych do korekty akustycznej sal ... 45
7.1. Charakterystyka akustyczna badanych sal ... 45
7.1.1. Sala Wielka ... 45
7.1.2. Sala Koncertowa ... 46
7.2. Badania właściwości akustycznych pomieszczeń po wprowadzeniu ustrojów mikroperforowanych ... 46
7.3. Wyniki badań ... 50
7.4. Omówienie wyników pomiarów akustycznych sal z mikroperforowanymi panelami dźwiękochłonnymi .. 51
8. Podsumowanie prac ... 53
9. Bibliografia ... 55
10. Załącznik A ... 56
11. Załącznik B ... 58
1. Wprowadzenie

Przedmiotem pracy są właściwości akustyczne transparentnych, mikroperforowanych ustrojów dźwiękochłonnych (transparent microperforated panel absorbers), które mogą być zastosowane do korekty akustycznej sal. Zastosowanie tego typu materiałów umożliwia połączenie funkcji akustycznych oraz wystawienniczych. Ze względu na małą masę i przezroczystą strukturę stanowią one atrakcyjny architektonicznie materiał do tworzenia wystroju wnętrz.

Celem pracy jest opracowanie teoretycznego modelu pochłaniania dźwięku przez mikroperforowane folie i cienkie płyty, opracowanie algorytmu obliczeniowego do komputerowych symulacji pochłaniania dźwięku, umożliwiającego wyznaczenie współczynnika pochłaniania jedno- i wielowarstwowych mikroperforowanych ustrojów dźwiękochłonnych i następnie weryfikacja wyników obliczeń na podstawie pomiarów prototypów takich ustrojów.

Zakres pracy obejmuje także zbadanie możliwości zastosowania opracowanych ustrojów do korekty akustycznej reprezentacyjnych sal Zamku Królewskiego w Warszawie, w celu poprawy warunków akustycznych dla przekazów słownych oraz brzmienia muzyki wykonywanej w tych salach.

Korekta właściwości akustycznych sal wiąże się na ogół ze zmianami wystroju architektonicznego wnętrz. W przypadku reprezentacyjnych sal zamkowych zakres możliwych zmian jest bardzo ograniczony ze względów konserwatorskich, a także z powodu dużego obciążenia sal planowymi uroczystościami i konferencjami. Stwierdzono, że najlepiej dostosowane do realnych warunków użytkowania sal zamkowych byłyby lekkie, przenośne panele z mikroperforowanymi ustrojami dźwiękochłonnymi.

Pomimo zalet charakteryzujących mikroperforowane folie i płyty, na rynku istnieje niewiele firm produkujących tego typu ustroje. Ograniczeniem w zastosowaniach ustrojów mikroperforowanych jest ich stosunkowo wysoka cena, wynikająca z kosztów produkcji.

Prace teoretyczne i technologiczne nad mikroperforowanymi ustrojami dźwiękochłonnymi nie zawierającymi materiałów porowatych lub włóknistych rozpoczęto w późnych latach sześćdziesiątych. W połowie lat siedemdziesiątych opublikowano model teoretyczny mechanizmu pochłaniania dźwięku przez ustroje mikroperforowane (Maa, Theory and design of microperforated panel sound-absorption constructions., 1975). Od tego czasu pojawiło się szereg publikacji teoretycznych dotyczących zjawiska pochłaniania dźwięku przez pojedyncze i dwuwarstwowe folie i płyty mikroperforowane. Niewiele jest
natomiast publikacji na temat ich praktycznego zastosowania, zwłaszcza w połączeniu z powierzchniami architektonicznymi o nieregularnym kształcie, gdzie założenia teoretyczne są częściowo spełnione.
2. Właściwości akustyczne pomieszczeń

Właściwości akustyczne pomieszczenia powinny być właściwie dostosowane do jego funkcji. Odpowiednia akustyka jest niezbędna dla: przekazów słownych (teatry, audytoria, sale konferencyjne, klasy szkolne), przekazów muzycznych (sale koncertowe, sale widowiskowe, pomieszczenia odsłuchowe, pomieszczenia nagraniowe), do ochrony przed hałasem (pomieszczenia biurowe i produkcyjne).

2.1. Subiektywna ocena akustyki pomieszczeń

Właściwości akustyczne oceniane są przez słuchaczy za pomocą szeregu cech, które nazywamy cechami wrażeniowymi. Należą do nich (Gade, 2007) (Beranek, 2004):
- pogłosowość,
- czytelność, przejrzystość,
- zrozumiałość mowy,
- intymność,
- przestrzenność (pozorna szerokość źródła, otoczenie dźwiękiem),
- głośność,
- ciepło brzmienia,
- zespołowość.

2.2. Wskaźniki oceny właściwości akustycznych pomieszczeń

Cechy wrażeniowe skorelowane są z parametrami fizycznymi pomieszczeń. Większość parametrów fizycznych pomieszczeń zdefiniowano w normie PN-EN ISO 3382: Akustyka – Pomiar parametrów akustycznych pomieszczeń. Wartości parametrów akustycznych mogą być wyznaczone na podstawie pomiarów w pomieszczeniu, jak też na podstawie obliczeń i symulacji.

Miarą pogłosowości (reverberance) jest czas pogłosu T i czasu wczesnego zaniku EDT. Czas pogłosu definiowany jest jako czas, w którym poziom dźwięku w pomieszczeniu zmniejszy się o 60 dB od po wyłączeniu źródła dźwięku. Ze względu na zjawisko maskowania dźwięku, zanik pogłosowy jest postrzegany tylko w początkowym okresie jego trwania. Z tego względu stosuje się pomiar czasu wczesnego zaniku dźwięku EDT (Early Decay Time), który jest lepiej skorelowany z wrażeniem pogłosowości niż czas pogłosu T.

Czas pogłosu pomieszczenia związany jest z jego funkcją użytkową. Przykładowo jeśli wymagana jest dobra zrozumiałość przekazów słownych, wówczas zaleca się aby czas
pogłosu miał małą wartość. Większe wartości czasu pogłosu są korzystne dla wykonywania muzyki oraz realizacji nagran muzycznych (rys. 2.1).

![Rys. 2.1 Typowe wartości czasu pogłosu pomieszczeń w zależności od ich funkcji oraz objętości (Bruel & Kjaer, 1978).](image)

W pomieszczeniach, które charakteryzują się dużą wartością czasu pogłosu, utrudnione jest prowadzenie koncertów muzyki rozrywkowej oraz imprez, gdzie istotna jest zrozumiałość przekazów słownych. Pomięzczenia takie nie mogą też służyć jako studio telewizyjne, bądź sala kinowa. Zbyt mała wartość czasu pogłosu może być niekorzystna dla brzmienia koncertów muzyki klasycznej.

Czytelność i przejrzystość (clarity) wyznacza się na podstawie stosunku energii w początkowym okresie odpowiedzi impulsowej do energii w pozostałym czasie jej trwania. Do oceny czytelności mowy ma zastosowanie wskaźnik C50, a do oceny przejrzystości dźwięków muzycznych stosuje się wskaźnik C80. Skale ocen czytelności i przejrzystości pokazane są na rysunku 2.3.
Do oceny zrozumiałości mowy (speech intelligibility) służy wskaźnik STI (Speech Transmission Index). Modulacja obwiedni sygnału testowego odpowiada zmianom obwiedni, które istnieją w mowie naturalnej przy wypowiadaniu słów i zdań. Pomiar STI uwzględnia zakłócenia występujące w kanale transmisyjnym, takie jak pogłos, echo, hałas i zniekształcenia nieliniowe. Wskaźnik STI przyjmuje wartości od 0 do 1. Skalę ocen zrozumiałości przedstawia tabela 2.1.

<table>
<thead>
<tr>
<th>Wartość STI</th>
<th>Zrozumiałość</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0,30</td>
<td>Zła</td>
</tr>
<tr>
<td>0,30 – 0,45</td>
<td>Słaba</td>
</tr>
<tr>
<td>0,45 – 0,60</td>
<td>Wystarczająca</td>
</tr>
<tr>
<td>0,60 – 0,75</td>
<td>Dobra</td>
</tr>
<tr>
<td>> 0,75</td>
<td>Znakomita</td>
</tr>
</tbody>
</table>

Dla oceny jakości sal muzycznych mają zastosowanie następujące wskaźniki akustyczne:

Intymność (intimacy) oceniana jest na podstawie czasu ITDG opóźnienia pierwszego odbicia dźwięku w odniesieniu do dźwięku bezpośredniego.

Ocena **przestrzenności** (spaciousness) dźwięku opiera się na dwóch cechach wrażeniowych:
- pozornej szerokości źródła ASW (apparent source width),
- otoczenia dźwiękiem LEV (listener envelopment).

ASW odpowiada wrażeniu zwiększenia szerokości źródła dźwięku w porównaniu do oceny wzrokowej. LEV oznacza wrażenie otoczenia słuchacza dźwiękiem pogłosowym. Do oceny tych właściwości wykorzystuje się wskaźnik udziału energii bocznej LF oraz współczynnik korelacji międzyusznej IACC.

Głośność (loudness) oceniana jest na podstawie poziomu ciśnienia akustycznego dźwięku odniesionego do poziomu ciśnienia akustycznego dźwięku bezpośredniego. Wskaźnik ten charakteryzuje wrażenie zwiększenia głośności źródła dźwięku poprzez akustykę pomieszczenia.
Ciepło brzmienia BR *(bass ratio)* jest wrażeniem skorelowanym z wartością czasu pogłosu w zakresie małych częstotliwości. Większy czas pogłosu przy małych częstotliwościach wzmacnia słyszalność basów przy wykonywaniu muzyki klasycznej.

Zespołowość *(_ease of ensemble)_* opisuje akustyczne warunki na scenie. Właściwość ta oceniana jest na podstawie wskaźnika ST_{Early} i dotyczy odbić dźwięku w czasie pierwszych 100 ms.

Tab 2.2 Zestawienie cech wrażeniowych i wskaźników akustycznych służących do ich oceny.

<table>
<thead>
<tr>
<th>CECHY WRAŻENIOWE</th>
<th>PARAMETRY AKUSTYCZNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pogłosowość</td>
<td>Czas pogłosu T,Czas wczesnego zaniku EDT</td>
</tr>
<tr>
<td>Czytelność, przejrzystość, zrozumiałość mowy</td>
<td>Wskaźnik C50, wskaźnik C80,Wskaźnik zrozumiałości RASTI, STI</td>
</tr>
<tr>
<td>Intymność</td>
<td>Czas pomiędzy dźwiękiem bezpośrednim a pierwszymi odbićmi ITDG</td>
</tr>
<tr>
<td>Przestrzenność</td>
<td>Współczynnik korelacji międzyuszowej dla średnich częstotliwości IACC,Udział energii bocznej LF</td>
</tr>
<tr>
<td>Głośność</td>
<td>Siła dźwięku G</td>
</tr>
<tr>
<td>Ciepło brzmienia</td>
<td>Stosunek czasu pogłosu niskich do średnich częstotliwości BR</td>
</tr>
<tr>
<td>Zespołowość</td>
<td>Wzajemna słyszalność muzyków na scenie ST_{Early}</td>
</tr>
</tbody>
</table>

2.3. Metody pomiarowe stosowane do wyznaczania wskaźników akustycznych pomieszczeń

Metody pomiaru czasu pogłosu oraz innych parametrów akustycznych opisane są w międzynarodowej normie PN-EN ISO 3382-1 Akustyka - Pomiar parametrów akustycznych pomieszczeń - Część 1: Pomieszczenia specjalne.

Czas pogłosu może być wyznaczony na podstawie zaniku poziomu dźwięku w pomieszczeniu lub na podstawie odpowiedzi impulsowej pomieszczenia. Do wyznaczania pozostałych parametrów ma zastosowanie odpowiedź impulsowa, która jest przebiegiem
ciśnienia akustycznego zarejestrowanym po wytworzeniu krótkiego impulsu dźwiękowego w pomieszczeniu.

Zgodnie z normą, odpowiedź impulsowa \(p(t) \) wyznaczana jest przy pomocy wszechkierunkowego źródła dźwięku i mikrofonu o charakterystyce dookólnej.

Czas pogłosu T30, T20, czas wczesnego zaniku EDT

Na ogół tło akustyczne przewyższa poziom -60 dB. Z tego względu stosuje się dane pomiarowe z przedziału od -5 dB do -35 dB względem poziomu w stanie ustalonym. Uzyskany w ten sposób czas oznacza się symbolem T30. Czas pogłosu wyznaczony na podstawie przedziału od -5 dB do -25 dB ma symbol T20. Czas wczesnego zaniku EDT wyznaczany jest na podstawie spadku o pierwszych 10 dB.

![Rys. 2.3 Ilustracja definicji czasu pogłosu (Gade, 2007).](image)

W pomiarach czasu pogłosu metodą odpowiedzi impulsowej, do wyznaczenia krzywej zaniku stosuje się odwrócone w czasie całkowanie kwadratu odpowiedzi (Vorländer, 2008).

\[
\int p^2(t) \, dt
\]

(2.1)

Wskaźnik czytelności C50, wskaźnik przejrzystości C80

Wskaźnik czytelności C50 wyznacza się z odpowiedzi impulsowej na podstawie stosunku energii dźwięku w pierwszych 50 ms do energii w pozostałym czasie.

\[
C_{50} = 10 \log \left(\frac{\int_0^{50ms} p^2(t) \, dt}{\int_{50ms}^{\infty} p^2(t) \, dt} \right)
\]

(2.2)

Podobnie, wskaźnik przejrzystości C80 wyznacza się z odpowiedzi impulsowej na podstawie stosunku energii dźwięku w pierwszych 80 ms do energii w pozostałym czasie.
Wskaźnik zrozumiałości przekazów słownych STI

Wyznaczenie wskaźnika STI polega na pomiarze spłycenia głębokości modulacji obwiedni sygnału testowego. Sygnałem testowym jest szum pasmowy, którego obwiednia modulowana jest przebiegiem sinusoidalnym od 0 do maksimum. Do obliczenia wskaźnika STI wykorzystywane jest 14 częstotliwości modulujących sygnał testowy w 7 pasmach oktawowych.

Czas opóźnienia pierwszego odbicia dźwięku ITDG

Czas ITDG wyznaczany jest jako różnica między czasem dotarcia pierwszego odbicia dźwięku, a czasem dotarcia dźwięku bezpośredniego.

Współczynnik korelacji międzyusznej IACC

Funkcja międzyusznej korelacji wzajemnej (Interaural Cross-correlation Function) opisuje różnice pomiędzy dźwiękiem docierającym od źródła do lewego i prawego ucha słuchacza (Ando, 1985). Jest zdefiniowana wzorem:

\[
IACF_t(\tau) = \frac{\int_{t_1}^{t_2} p_L(t)p_R(t+\tau)dt}{\left(\int_{t_1}^{t_2} p_L^2 dt \int_{t_1}^{t_2} p_R^2 dt\right)^{1/2}}
\]

(2.4)

gdzie \(p_L, p_R\) oznaczają przebiegi odpowiedzi impulsowej na wejściu lewego i prawego kanału słuchowego. Czas \(t = 0\) odpowiada chwili dotarcia dźwięku bezpośredniego emitowanego przez źródło pomiarowe. Całkując w przedziale \(t_1\) do \(t_2\), korelacja zostaje wyznaczona dla dźwięku bezpośredniego, wczesnych odbić lub pozostałej części zjawiska pogłosowego. W pomiarach przyjmuje się \(\tau\) z zakresu od -1 ms do 1 ms, ponieważ czas, w jakim dźwięk przebywa drogę od lewego do prawego ucha wynosi ok. 1 ms.

Wskaźnik międzyusznej korelacji wzajemnej (ang. Interaural Cross-correlation Coefficient), określany jest jako maksimum funkcji IACF.

\[
IACC_t = \text{max}|IACF_t(\tau)| \quad \text{dla} \quad -1 < \tau < 1
\]

(2.5)

Ze względu na fakt, że o wrażeniu przestrzenności decydują przede wszystkim odbicia wczesne, wyróżnia się trzy typy IACC, różniące się przedziałami całkowania odpowiedzi impulsowej.

\(IACC_E\) (early) – obliczane jest dla przedziału całkowania od 0 do 80 ms.
\(IACC_L\) (late) – od 80 ms do ok. 2 s oraz \(IACC_F\) (full) – od 0 do ok. 2 s.
Na podstawie IACC_E wyznaczana jest miara jakości akustycznej sal koncertowych BQI (ang. *Binaural Quality Index*), którą się definiuje jako $1 - IACC_{E3}$, (indeks E3 oznacza wartość średnią IACC_E z pasm 500, 1000 i 2000 Hz). Wskaźnik BQI, wyznaczony w salach bez publiczności, posiada dużą korelację z ocenami subiektywnymi jakości akustycznej tych sal (Beranek, 2004). W badaniach IACC wykorzystywana jest na ogół sztuczna głowa.

Wskaźnik LF

Wskaźnik udziału energii bocznej LF wyznacza się ze wzoru:

$$LF = \frac{\int_{5ms}^{80ms} p_{\infty}^2(t)dt}{\int_{0}^{80ms} p^2(t)dt}$$

(2.6)

gdzie $p_{\infty}(t)$ oznacza odpowiedź impulsową uzyskaną przy pomocy mikrofonu o charakterystyce ósemkowej, którego maksima charakterystyki kierunkowości skierowane są prostopadle do kierunku, z którego dochodzi dźwięk bezpośredni.

Sila dźwięku G

Sila dźwięku G oznacza poziom dźwięku w pomieszczeniu odniesiony do poziomu zmierzonego w odległości 10 m od źródła w polu swobodnym.

$$G = 10\log \frac{\int_{0}^{\infty} p^2(t)dt}{\int_{0}^{10m} p_{10m}^2(t)dt}$$

(2.7)

Wskaźnik BR

Wskaźnik BR (*Bass Ratio*) wyznaczany jest na podstawie stosunku średniej wartości czasu pogłosu w oktawach 125, 250 Hz do średniej wartości w oktawach 500, 1000 Hz.

$$BR = \frac{T_{125Hz} + T_{250Hz}}{T_{500Hz} + T_{1000Hz}}$$

(2.8)

Wskaźnik ST_Early

Wskaźnik ST_Early wyznacza się ze stosunku energii dźwięku w czasie pierwszych 100ms do energii dźwięku bezpośredniego. Do energii dźwięku bezpośredniego wliczana jest energia odbicia od podłogi. Wielkości te mierzone są w odległości 1 m od środka akustycznego wszechkierunkowego źródła dźwięku.

$$ST_{early} = 10\log \frac{\int_{0}^{100ms} p_{20ms}^2(t)dt}{\int_{0}^{10ms} p_{10ms}^2(t)dt}$$

(2.9)
3. Kształtowanie akustyki pomieszczeń

Dobrze zaprojektowane pod względem akustyki pomieszczenie powinno posiadać odpowiednią objętość, kształt oraz właściwą adaptację akustyczną. Do adaptacji wykorzystuje się odpowiednio rozmieszczone ustroje dźwiękochłonne, rozpraszające oraz powierzchnie odbijające dźwięk. Cox i D'Antonio zaproponowali następujący podział pomieszczeń z punktu widzenia wystroju akustycznego dostosowanego do ich funkcji (Cox i D'Antonio, Acoustic absorbers and diffusers: theory, design and application, 2009):

- pomieszczenia do wykonywania muzyki i nagrań,
- pomieszczenia odsłuchowe,
- pomieszczenia w których istotna jest ochrona przed hałasem.

Poniżej przedstawiono ogólne zalecenia dotyczące doboru rodzajów ustrojów akustycznych przy projektowaniu wystroju akustycznego pomieszczeń.

![Rys 3.1 Zalecenia dotyczące doboru rodzajów ustrojów akustycznych.](image)

wśród akustyków i architektów. Przykładem mogą być ustroje mikroperforowane badane w niniejszej pracy.

3.1. Zastosowanie ustrojów dźwiękochłonnych do kształtowania akustyki

Wyróżnia się trzy główne obszary zastosowań ustrojów dźwiękochłonnych w akustycze pomieszczeń. Są nimi:

- kształtowanie charakterystyki pogłosowej,
- kontrola rezonansów,
- redukcja odbić dźwięku.

3.1.1. Kształtowanie charakterystyki pogłosowej

Czas pogłosu pomieszczenia zależy od jego kubatury oraz ilości materiałów dźwiękochłonnych w pomieszczeniu. Podstawową zależność pomiędzy czasem pogłosu, a objętością pomieszczenia i pochłanianiem dźwięku przez powierzchnie opisuje wzór Sabine’a:

\[T_{60} = \frac{55,3V}{cA} \]

(3.1)

gdzie \(V \) oznacza objętość pomieszczenia, \(c \) prędkość dźwięku, \(A \) chłonność akustyczną wszystkich powierzchni pomieszczenia, którą wyznacza się ze wzoru:

\[A = \sum_{i=1}^{N} S_i \alpha_i \]

(3.2)

gdzie \(S_i \) oznacza pole i-tej powierzchni w pomieszczeniu, a \(\alpha_i \) współczynnik pochłaniania tej powierzchni.

Współczynnik pochłaniania dźwięku przez powierzchnię jest to stosunek energii pochłoniętej przez powierzchnię do energii padającej na nią. Teoretycznie może on przyjmować wartości z zakresu od 0 do 1. Jednakże w pomiarach z wykorzystaniem komory pogłosowej spotyka się wyniki pomiarów \(\alpha \) większe niż 1, co wiąże się z efektem ugięcia fali dźwiękowej na krawędziach badanych próbek. Współczynnik pochłaniania można zdefiniować dla określonego kąta padania fali dźwiękowej lub dla losowego kierunku padania.

Dla potrzeb projektowania akustyki pomieszczeń wykorzystuje się współczynnik pochłaniania \(\alpha \) wyznaczany z wzoru Sabine’a, na podstawie pomiarów czasu pogłosu w komorze pogłosowej. Pole akustyczne w komorze pogłosowej ma charakter dyfuzyjny, w którym kierunek padania fali dźwiękowej na powierzchnię dźwiękochłonną jest losowy.
Ośrodek powietrzny, w którym rozchodzą się fale pochłania część energii dźwięku. Pochłanianie to zależy od wilgotności ośrodka i zwiększa się ze wzrostem częstotliwości fali. Chłonność akustyczna wynikająca z pochłaniania przez powietrze rośnie ze wzrostem kubatury i wyraża się wzorem:

$$A_{air} = 4mV$$

(3.3)

gdzie m jest współczynnikiem tłumienia powietrza. Wzór na czas pogłosu uwzględniający pochłanianie dźwięku w ośrodku powietrznym przyjmuje postać:

$$T_{60} = \frac{55,3V}{cA + 4mV}$$

(3.4)

Wzór Sabine’a umożliwia oszacowanie czasu pogłosu z małym błędem w pomieszczeniach, w których dominują powierzchnie o małych współczynnikach pochłaniania dźwięku. W przypadku, gdy średni współczynnik pochłaniania dźwięku jest większy niż 0,2 lepsze oszacowanie można uzyskać korzystając ze wzoru Eyringa:

$$T_{60} = \frac{55,3V}{cS\ln(1 - \bar{\alpha})}$$

(3.5)

gdzie $\bar{\alpha}$ oznacza średnią wartość współczynnika pochłaniania przez powierzchnię S.

3.1.2. Kontrola rezonansów

Stosowanie metody statystycznej jest uzasadnione dla zakresu częstotliwości większych niż częstotliwość Schroedera, gdzie liczba rezonansów przypadających na jednostkę szerokości pasma jest dostatecznie duża. Podany przez Schroedera wzór na częstotliwość graniczną f_c ma postać (Toole, 2008):

$$f_c = 2000 \sqrt{\frac{T_{60}}{V}}$$

(3.6)

Poniżej częstotliwości f_c ujawniają się pojedyncze rezonanse związane z modami drgań własnych pomieszczenia. Rezonanse te niekorzystnie zmieniają barwę dźwięku w zakresie małych częstotliwości i w szczególności dotyczy to małych pomieszczeń, o kubaturze mniejszej niż 300 m3. W pomieszczeniach prostopadłościennych częstotliwości rezonansowe można wyznaczyć następującego wzoru:

$$f_{n_xn_yn_z} = \frac{c}{2} \sqrt{\left(\frac{n_x}{l_x}\right)^2 + \left(\frac{n_y}{l_y}\right)^2 + \left(\frac{n_z}{l_z}\right)^2}$$

(3.7)

gdzie n_x, n_y, n_z to liczby naturalne identyfikujące poszczególne mody pomieszczenia, a l_x, l_y, l_z wymiary pomieszczenia.
Obecność rezonansów w pomieszczeniu wiąże się z występowaniem dwóch zjawisk związanych lokalnie z miejscem ustawienia źródła dźwięku i słuchacza:
- wąskopasmowe podbicie lub tłumienie w zakresie małych częstotliwości,
- przedłużone wybrzmiewanie dźwięku o częstotliwościach odpowiadających rezonansom po wyłączeniu źródła.

3.1.3. Redukcja odbić dźwięku

Obecność odbić w pomieszczeniu silnie wpływa na percepcję dźwięku, lokalizację źródeł dźwięku, poczucie przestrzenności, zmiany barwy, czy zrozumiałość mowy. Do redukcji niekorzystnych odbić dźwięku docierających do słuchacza służą ustroje dźwiękochłonne, które można w ekonomiczny sposób usytuować w miejscach powstawania odbić.

3.2. Rodzaje ustrojów dźwiękochłonnych

Ze względu na mechanizm pochłaniania dźwięku ustroje możemy podzielić na dwie grupy:
- porowate,
- rezonansowe.

3.2.1. Ustroje porowate

Ustroje porowate są najczęściej wykorzystywanymi ustrojami dźwiękochłonnymi. W akustycie pomieszczeń występują zazwyczaj jako panele akustyczne wykonane z wełny mineralnej lub gąbek akustycznych, ale również mogą być to wykładziny podłogowe, zasłony oraz inne elementy wystroju wnętrza. Poza akustyką pomieszczeń wykorzystuje się je szeroko w przemyśle, głównie jako środek zapobiegawczy przeciwko hałasowi.

Ustrój porowaty wykonany jest z materiału, w którym propagacja powietrza zachodzi w sieci połączonych porów. Energia akustyczna fali tracona jest w takiej sieci głównie dzięki lepkości powietrza oraz zmniejszaniu się pędu powietrza wraz z wnikaniem w nieregularną...
strukturę ustrój. Aby pochłanianie było znaczące struktura materiału musi składać się z otwartych porów, co zapewnia przepływ powietrza przez cały ustrój.

Ustroje tego typu montuje się w pewnej odległości od twardych odbijających powierzchni, tam gdzie prędkość akustyczna fali przyjmuje największą wartość. Maksimum pochłaniania uzyskujemy, gdy materiał porowaty znajduje się w odległości równej 1/4 długości padającej fali od powierzchni odbijającej dźwięk.

3.2.2. Ustroje rezonansowe

Dzięki wykorzystaniu zjawiska rezonansu możliwe jest stworzenie ustrójów, które skutecznie pochłaniają dźwięki w zakresie małych i średnich częstotliwości. Jest to trudne do uzyskania przy pomocy ustrójów porowatych ze względu na wymaganą dużą grubość materiału dźwiękochłonnego. Ustroje rezonansowe najefektywniej pochłaniają dźwięk, gdy są umieszczone przy powierzchni ograniczającej pomieszczenie, tam gdzie występuje maksimum ciśnienia akustycznego. Ze względu na rezonansowy charakter pochłaniania trudno jest uzyskać szerokopasmowy ustrój dźwiękochłenny.

Rezonansowe ustrój dźwiękochłonne występują w dwóch formach:
– rezonator Helmholtza,
– ustrój membranowy lub płytowy.

Charakterystykę współczynnika pochłaniania dźwięku przez rezonator Helmholtza można obliczyć z dosyć dobrą dokładnością. W przypadku ustrójów płytowych jest to zadanie trudniejsze. Ustroje rezonansowe są często stosowane do tłumienia rezonansów pomieszczenia. Ustroje takie mogą być wykonane w postaci płyt perforowanych.

Standardowe płyty perforowane o rozmiarze perforacji rzędu kilku milimetrów nie posiadają same w sobie właściwości tłumienia dźwięku, ze względu na znikomą rezystancję akustyczną. Dlatego nieodłącznym elementem ustrój wykorzystującego takie płyty jest warstwa porowata. Zazwyczaj wykorzystuje się do tego celu wełnę mineralną.
4. Ustroje mikroperforowane

Mikroperforowane ustrójekochłonne weszły do produkcji w ostatnich latach i wzbudziły duże zainteresowanie akustyków i architektów. Specyficzny mechanizm pochłaniania dźwięku bez konieczności stosowania materiałów porowatych otwiera dla nich nowe obszary zastosowań.

Tłumienie dźwięku przez mikroperforowane ustrójke następuje wskutek ograniczonego przepływu powietrza przez otwory o średnicy rzędu ułamków milimetra, dzięki czemu obecność materiału porowatego zapewniającego odpowiednią rezystancję akustyczną staje się zbędna.

![Fot.4.1 Fragment ustrójku mikroperforowanego.](image)

Materiałami wykorzystywanymi do produkcji folii i płyt mikroperforowanych są głównie tworzywa sztuczne, lecz mogą to być również inne materiały, takie jak: papier, drewno, metal. W cienkich foliach, o grubości 0,1 mm, otwory wykonywane są metodą wyciskania lub elektroerozji. W grubszych foliach i płytach o grubości od 2 do 5 mm otwory uzyskiwane są poprzez nawiercanie za pomocą wielowrzecionowych frezarek.

4.1. Wyznaczanie współczynnika pochłaniania dźwięku przez ustrój na podstawie jego impedancji akustycznej

Pochłanianie dźwięku przez płaską powierzchnię opisuje współczynnik pochłaniania dźwięku α zdefiniowany jako stosunek energii pochłoniętej W_{abs} do energii padającej W_{inc} na jednostkę powierzchni.

$$\alpha = \frac{W_{abs}}{W_{inc}}$$

Odbicie dźwięku definiuje się za pomocą współczynnika odbicia R, który jest wielkością zespoloną. Współczynnik ten wyznaczany jest na podstawie stosunku ciśnienia
akustycznego fali odbitej \(p_{\text{refl}}\) i padającej \(p_{\text{inc}}\). Związek pomiędzy współczynnikiem pochłaniania dźwięku, a współczynnikiem odbicia opisuje równanie:

\[
\alpha = 1 - \left| \frac{p_{\text{refl}}}{p_{\text{inc}}} \right|^2 = 1 - |R|^2
\]

(4.2)

Metody obliczeniowe współczynnika pochłaniania \(\alpha\) polegają na obliczeniu wartości zespolonej współczynnika \(R\) z impedancji akustycznej \(Z\) powierzchni dźwiękochłonnej.

\[
R = \frac{Z - Z_0}{Z + Z_0}
\]

(4.3)

gdzie \(Z_0 = \rho_0 c\).

Z zależności 4.2 i 4.3 wynika następujący, ogólny wzór do obliczenia współczynnika odbicia \(\alpha\) z impedancji \(Z\) powierzchni dźwiękochłonnej:

\[
\alpha = \frac{4\text{Re}(Z)Z_0}{[\text{Re}(Z) + Z_0]^2 + [\text{Im}(Z)]^2}
\]

(4.4)

Powyższe równania zakładają kierunek padania fali prostopadły do powierzchni ustroju dźwiękochłonnego. Wartość współczynnika pochłaniania dźwięku zależy także od kąta padania fali. Dla fal padających na powierzchnię ustroju dźwiękochłonnego pod kątem \(\theta\) względem kierunku prostopadłego do powierzchni składowa prędkości akustycznej \(u'\) prostopadła do powierzchni ustroju ma wartość (Malecki, 1964):

\[
u' = u \cos \theta
\]

(4.5)

Wskutek tego impedancja akustyczna ośrodka \(Z_0\) maleje odwrotnie proporcjonalnie do funkcji \(\cos(\theta)\):
Współczynnik odbicia fali padającej pod kątem \(\theta \) wyznacza się ze wzoru:

\[
R_\theta = \frac{Z \cos \theta - Z_0}{Z \cos \theta + Z_0}
\]

(4.7)

Współczynnik pochłaniania dźwięku w polu dyfuzyjnym \(\alpha_R \) może zostać obliczony poprzez całkowanie zależności \(\alpha_\theta \) w zakresie kątów od 0 do \(\pi/2 \):

\[
\alpha_R = 2 \int_0^{\pi/2} \alpha_\theta \sin \theta \cos \theta \, d\theta
\]

(4.8)

gdzie

\[
\alpha_\theta = 1 - |R_\theta|^2
\]

(4.9)

4.2. Wyznaczanie impedancji akustycznej mikroperforowanego ustroju dźwiękochłonnego

Mikroperforowane płyty lub folie mogą być rozpatrywane jako sieć krótkich, wąskich kanalików o cylindrycznym kształcie, oddalonych od siebie o odległości znacznie większe niż ich średnica, lecz małe w porównaniu z długością padającej na ich powierzchnie fali akustycznej. Impedancję płyt lub folii mikroperforowanych wyznacza się na podstawie analizy propagacji dźwięku w przestrzeni cylindrycznej.

Dla cylindrów, których długość jest nieznaczna w porównaniu do długości fali, impedancja akustyczna cylindra wyrażana jest wzorem (Maa, Potential of microperforated panel absorber, 1998):

\[
Z_1 = \frac{\Delta p}{u} = j \omega \rho_0 t \left[1 - \frac{2J_1(k\sqrt{-j})}{k\sqrt{-j}J_0(k\sqrt{-j})} \right]^{-1}
\]

(4.10)

gdzie \(J_0 \) oraz \(J_1 \) są funkcjami Bessela zerowego oraz pierwszego rzędu, \(\rho_0 \) jest gęstością powietrza, \(t \) jest długością cylindra, a \(k \) jest tzw. stałą perforacji opisaną wzorem:

\[
k = r_0 \sqrt{\frac{\rho_0 \omega}{\eta}}
\]

(4.11)

gdzie \(\eta \) jest współczynnikiem lepkości powietrza, a \(r_0 \) jest promieniem cylindra.

Aby uzyskać impedancję akustyczną płyty lub folii mikroperforowanej \(z_1 \) należy podzielić równanie 4.10 przez powierzchnię otwartą płyty \(\varepsilon \) (Cox i D'Antonio, Technical Bulletin on the Design of Microperforated Transparent Absorbers, 2005).
W powyższym równaniu środkowe wyrażenie jest to rezystancja promieniowania otworu, a ostatnim wyrażeniem jest poprawka brzegowa pozwalająca obliczyć reaktancję promieniowania kanalika.

Wyznaczając charakterystykę pochłaniania dźwięku przez ustrój mikroperforowany należy również uwzględnić to, że warstwa mikroperforowana zachowuje się jak membrana tworząc dodatkowo membranowy ustrój dźwiękochłonny. Ponieważ częstotliwości rezonansowe obu ustrojów mogą znajdować się w tym samym zakresie, należy rozpatrywać oba mechanizmy pochłaniania dźwięku jednocześnie (Kang i Fuchs, 1999).

W publikacji Kanga i Fuchsa pochłanianie dźwięku przez warstwę mikroperforowaną zostało przedstawione w układzie analogii elektro-akustycznych jako równolegle połączenie impedancji akustycznej ustrój mikroperforowanego i membranowego.

\[
Z_L = \frac{Z_1}{\varepsilon} + \frac{\sqrt{2\omega \eta \rho}}{2\varepsilon} + \frac{j1.7\omega \rho r_0}{\varepsilon} \quad (4.12)
\]

Na rysunku 4.2 przedstawiono schemat zastępczy dla mikroperforowanej membrany zamontowanej równolegle do twardej powierzchni odbijającej dźwięk (rys. 4.1). Impedancja pustki powietrznej o głębokości \(D\) znajdującej się pomiędzy membraną a powierzchnią odbijającą wynosi:

\[
z_D = -j \cot \left(\frac{\omega D}{c} \right) \quad (4.13)
\]

Elementy \(R_M\) oraz \(M_M\) przedstawiają rezystancję oraz reaktancję akustyczną membrany, której impedancja wynosi:

\[
z_M = \frac{R_M + jM_M}{\rho_0 c} = r' + j\omega m'' \quad (4.14)
\]
gdzie m'' jest gęstością powierzchniąmembrany podzieloną przez ρ_0c, a r' rezystancją akustyczną membrany, która zależy głównie od warunków zamocowania membrany.

Elementy R_L oraz M_L przedstawiają rezystancję oraz reaktancję perforacji, których impedancja została opisana wzorem 4.12. Fala dźwiękowa padająca na powyższą strukturę może być przedstawiona jako źródło ciśnienia akustycznego o amplitudzie $2p$ oraz wewnętrznej rezystancji ρ_0c odpowiadającej impedancji powietrza.

Znormalizowana impedancja całego systemu może być wyznaczona ze wzoru:

$$z = \frac{z_M z_L}{z_M + z_L} + z_D$$

(W4.15)

Współczynnik pochłaniania może zostać wyznaczony na podstawie impedancji z korzystając ze wzorów przedstawionych w rozdziale 4.1. Przy obliczaniu współczynnika pochłaniania dla kąta padania fali większego od 0 należy przyjąć:

$$z_D = -j \cot \left(\frac{\omega d \cos \theta}{c} \right)$$

(W4.16)

Rysunek 4.3 przedstawia schemat zastępczy ustroju składającego się z dwóch warstw mikroperforowanych oraz twardej powierzchni odbijającej. Impedancję z takiej struktury można wyznaczyć ze wzoru 4.17.

$$z = \frac{z_{M2} z_{L2}}{z_{M2} + z_{L2}} + \left(\frac{z_{M1} z_{L1}}{z_{M1} + z_{L1}} + z_{D1} \right) z_{D2}$$

(W4.17)

Rys 4.3 Schemat zastępczy dwuwarstwowego mikroperforowanego ustroju dźwiękochłonnego.

Analogicznie jak dla ustroju jednowarstwowego przy obliczaniu współczynnika pochłaniania dla kąta padania fali większego od 0 należy przyjąć:
z_{D1} = -j \frac{\cot \left(\frac{\omega D_1 \cos \theta}{c} \right)}{\cos \theta} \quad (4.18)

oraz

z_{D2} = -j \frac{\cot \left(\frac{\omega D_2 \cos \theta}{c} \right)}{\cos \theta} \quad (4.19)

Rys. 4.4 Model dwuwarstowego ustroju mikroperforowanego.
5. Badania ustrojów mikroperforowanych

5.1. Cel i zakres badań

Celem badań było wyznaczenie charakterystyk częstotliwościowych współczynników pochłaniania mikroperforowanych ustrojów jedno i dwuwarstwowych. Charakterystyki te zostały wyznaczone na podstawie pomiarów próbek mikroperforowanych ustrojów dźwiękochłonnych w warunkach laboratoryjnych. Pomiary zostały poprzedzone symulacjami komputerowymi z zastosowaniem przedstawionego w rozdz. 4 teoretycznego modelu pochłaniania dźwięku przez ustroje mikroperforowane.

W zakres badań wchodziło:

− Opracowanie metodyki badań współczynników pochłaniania dźwięku mikroperforowanych ustrojów dźwiękochłonnych ustawionych naprzeciw płaskiej powierzchni odbijającej oraz uwzględniającej wpływ rozpraszania dźwięku przez elementy wystroju architektonicznego.
− Wyznaczenie współczynników pochłaniania ustrojów jedno oraz wielowarstwowych na podstawie symulacji komputerowych.
− Pomiar współczynników pochłaniania ustrojów jedno oraz wielowarstwowych.
− Zbadanie wpływu elementów rozpraszających dźwięk na charakterystyki pogłosowe pomieszczeń.
− Pomiar współczynników pochłaniania mikroperforowanych ustrojów akustycznych przy różnych konfiguracjach elementów rozpraszających dźwięk.

5.2. Opis badanych próbek

Badania wykonano na dwóch rodzajach materiałów mikroperforowanych:

− płyty MA 15-s firmy Sonogamma,
− folie Microsorber firmy Kaefer.

Dane katalogowe badanych materiałów przedstawia tabela 5.1.

<table>
<thead>
<tr>
<th>Materiał</th>
<th>MA 15-s, Sonogamma:</th>
<th>Microsorber, Kaefer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grubość</td>
<td>APET – PETG</td>
<td>Aryphan</td>
</tr>
<tr>
<td>Średnica otworów</td>
<td>0,55 mm</td>
<td>0,2 mm</td>
</tr>
<tr>
<td>Odstęp pomiędzy środkami sąsiednich otworów</td>
<td>5 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Rodzaj siatki na której rozmieszczone są otwory</td>
<td>prostokątna</td>
<td>trójkątna</td>
</tr>
<tr>
<td>Pole płyty/folii przypadające na jeden otwór</td>
<td>25 mm2</td>
<td>3,46 mm2</td>
</tr>
<tr>
<td>Gęstość powierzchniowa</td>
<td>2 kg/m2</td>
<td>0,14 kg/m2</td>
</tr>
</tbody>
</table>
Materiały te posłużyły do budowy ustrojów dźwiękochłonnych, ze sztywnych drewnianych ram, do których przymocowano mikroperforowane folie i płyty.

![Mikroperforowany ustrój dźwiękochłonny przed badaniem w komorze pogłosowej.](image)

Fot 5.1 Mikroperforowany ustrój dźwiękochłonny przed badaniem w komorze pogłosowej.

Badane próbki o wymiarach 2,5 × 1,25 m ustawiano równolegle do ścian komory, w określonej odległości d od ścian. Łączna powierzchnia mierzonych próbek wynosiła 9,37 m². W przypadku ustrojów dwuwarstwowych odstęp między warstwami mikroperforowanymi wynosił 10 cm, to jest tyle, ile wynosiła szerokość ram, które zamykały na obwodzie przestrzeń pomiędzy warstwami folii.

Pomiędzy płytą mikroperforowaną, a twardym podłożem zostawiano otwartą przestrzeń na obwodzie ram.

![Badane typy ustrojów.](image)

Rys 5.1 Badane typy ustrojów.
Wykonano cztery warianty ustrojów (rys 5.1):

- **TYP A** – pojedyncza płyta MA 15-s,
- **TYP B** – pojedyncza folia Microsorber,
- **TYP BB** – podwójna folia Microsorber,
- **TYP AB** – połączenie płyty MA 15-s oraz folii Microsorber.

5.3. Modelowanie komputerowe właściwości mikroperforowanych ustrojów dźwiękochłonnych

Modelowanie komputerowe polegało na teoretycznym wyznaczeniu charakterystyk pochłaniania dźwięku badanych ustrojów. Do obliczeń wprowadzono dane odzwierciedlające konfiguracje ustrojów zastosowane w pomiarach.

Symulacje komputerowe wykonano na podstawie modelu teoretycznego opisanego w rozdziale 4. Do symulacji komputerowych wykorzystano program napisany w środowisku Matlab. Umożliwia on obliczenie współczynnika pochłaniania dźwięku ustrojów ustawionych w różnych odległościach od twardej powierzchni odbijającej. Funkcje Matlaba zawierające algorytmy obliczeniowe znajdują się w załączniku A. Dane materiałowe badanych próbek zawierały: grubość folii lub płyty mikroperforowanej, jej gęstość powierzchniową, średnicę perforacji oraz powierzchnię płyty lub folii przypadającą na jeden otwór.

Symulacje przeprowadzono dla następujących wariantów konfiguracyjnych:

- **TYP A, TYP B, TYP BB**: odległość \(d = 20 \text{ cm}, 40 \text{ cm}; \)
- **TYP AB**: odległość \(d = 16 \text{ cm}, 30 \text{ cm}, 50 \text{ cm}. \)

5.4. Pomiary właściwości akustycznych mikroperforowanych ustrojów dźwiękochłonnych

Metodykę badań opracowano na podstawie normy PN-EN ISO 354. Badanie polegało na pomiarze czasu pogłosu pustej komory pogłosowej oraz komory pogłosowej z zamontowaną próbką ustroju. Do wyznaczenia współczynnika pochłaniania dźwięku badanych próbek zastosowano wzór Sabine’a:

\[
T = \frac{55,3V}{cA}
\]

gdzie \(T \) jest czasem pogłosu pustej komory pogłosowej, \(V \) jest jej objętością, \(c \) prędkością dźwięku, \(A \) całkowitą chłonnością powierzchni ograniczających pomieszczenie. Przekształcając powyższe równanie otrzymujemy wzór na chłonność akustyczną komory laboratoryjnej \(A_1 \):

28
Odpowiedni wzór na chłonność akustyczną komory pogłosowej z zamontowaną próbką ma postać:

\[A_1 = \frac{55,3V}{cT_1} \]

\[A_2 = \frac{55,3V}{cT_2} \]

T₁ oraz T₂ – czas pogłosu komory odpowiednio przed i po wstawieniu badanej próbki ustroju dźwiękochłonnego. Przyrost chłonności można wyznaczyć ze wzoru:

\[A_T = A_2 - A_1 = \frac{55,3V}{c} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \]

Końcowy wzór do obliczenia współczynnika pochłaniania badanego ustroju:

\[\alpha_s = \frac{A_T}{S} \]

gdzie S jest powierzchnią badanej próbki.

Badania wykonano w komorze pogłosowej Wydziału Reżyserii Dźwięku Uniwersytetu Muzycznego Fryderyka Chopina. Objętość komory wynosiła 78 m³, zaś całkowite pole powierzchni ścian, podłogi i stropu komory około 118 m². Charakterystykę częstotliwościową czasu pogłosu komory pogłosowej przedstawiono na rys. 5.3 oraz w tabeli 1 w załączniku B.

Rys. 5.2 Model komputerowy komory pogłosowej.
Pomiary czasu pogłosu wykonano metodą szumu przerywanego. Zaniki szumu różowego poddawano analizie widmowej w pasmach tercjowych. Jako wszechkierunkowe źródło dźwięku zastosowano zestaw 12 głośników zamontowanych na powierzchni dwunastościanu. Do rejestracji oraz analiz widmowych zastosowano system pomiarowy Brüel & Kjaer PULSE, wyposażony w parę mikrofonów wszechkierunkowych o średnicy membrany 1/2 cala.
W każdej serii pomiarowej źródło dźwięku ustawiano w trzech pozycjach, zaś mikrofony pomiarowe w dziesięciu pozycjach. Rozmieszczenie źródła dźwięku i mikrofonów przedstawiono na rysunku 5.5. Przy każdym ustawieniu źródła i odbiornika rejestrowano trzy zaniki szumu.

5.4.1. Badania ustrojów mikroperforowanych umieszczonych przed powierzchnią odbijającą dźwięk

5.4.2. Badania wpływu elementów rozpraszających znajdujących się między badanymi próbkami ustrojów a powierzchnią odbijającą

Wstępne badanie polegało na pomiarze czasu pogłosu komory bez ustrojów dźwiękochłonnych, z elementami rozpraszającymi dźwięk. Były to pionowo ustawiane twardé rury PCV, o dwóch średnicach: 160 mm i 315 mm. Takie ustawienie rur miało modelować zjawisko rozpraszania dźwięku przez kolumny i inne elementy architektoniczne występujące w salach Zamku Królewskiego. Badane konfiguracje ustrojów rozpraszających pokazano na rys. 5.7.

Badania wpływu zjawiska rozpraszania dźwięku na właściwości dźwiękochłonne ustrojów mikroperforowanych wykonano przy ustawieniu elementów rozpraszających
pomiędzy foliami, a ścianami komory pogłosowej. Do rozpraszania odbić dźwięku użyto rur PCV rozmieszczonych równomiernie wzdłuż ścian bocznych komory (rys. 5.8).

Rys. 5.8 Rozmieszczenie elementów rozpraszających podczas pomiarów właściwości ustrojów mikroperforowanych.

Fot. 5.3 Ustroje mikroperforowane wraz z elementami rozpraszającymi dźwięk.
5.5. Wyniki badań

5.5.1. Wyniki modelowania komputerowego właściwości ustrojów mikroperforowanych

Wyniki obliczeń symulacyjnych przedstawiono w formie wykresów charakterystyk współczynnika pochłaniania dźwięku w funkcji częstotliwości. Tabelaryczne zestawienie wyników obliczeń zamieszczono w załączniku B.

Obliczone charakterystyki pochłaniania dźwięku dla ustroju typu A, B AB, BB przy różnych odległościach od ściany pokazano na rys. 5.5.1 – 5.5.4.

Rys. 5.5.1 Obliczone charakterystyki współczynnika pochłaniania ustroju typu A dla dwóch odległości od ściany.

Rys. 5.5.2 Obliczone charakterystyki współczynnika pochłaniania ustroju typu B dla dwóch odległości od ściany.
5.5.2. Wyniki pomiarów właściwości akustycznych ustrojów mikroperforowanych z odbiciami dźwięku od powierzchni płaskiej

Na rys. 5.5.5 i 5.5.6 przedstawiono zbadane charakterystyki współczynnika pochłaniania dźwięku przez ustrój typu A (płyty MA 15-s). Dla porównania pokazano wyniki symulacji oraz wyniki pomiarów płyt w laboratorium (procedura zgodna z normą ISO354) podane przez producenta. Wartości liczbowe znajdują się w tabelach w załączniku B.
Rys. 5.5.5 Porównanie współczynników pochłaniania ustroju typu A w odległości 40 cm od ściany.

Rys. 5.5.6 Porównanie współczynników pochłaniania ustroju typu A w odległości 20 cm od ściany.

Na rys. 5.5.7 – 5.5.10 przedstawiono wyniki pomiarów charakterystyk współczynnika pochłaniania dźwięku przez ustroje typu B oraz BB (folie Microsorber). Dla porównania pokazano charakterystyki współczynnika pochłaniania uzyskane z symulacji. Wartości liczbowe znajdują się w tabelach w załączniku B.
Rys. 5.5.7 Porównanie współczynników pochłaniania ustroju typu B w odległości 40 cm od ściany.

Rys. 5.5.8 Porównanie współczynników pochłaniania ustroju typu B w odległości 20 cm od ściany.

Rys. 5.5.9 Porównanie współczynników pochłaniania ustroju typu BB w odległości 40 cm od ściany.
Rys. 5.5.10 Porównanie współczynników pochłaniania ustroju typu BB w odległości 20 cm od ściany.

Na rys. 5.5.11 – 5.5.13 pokazano wyniki pomiarów współczynnika pochłaniania ustrojów dźwiękochłonnych typu AB (połączenie płyt MA 15-s i folii Microsorber). Dla porównania pokazano charakterystyki współczynnika pochłaniania uzyskane z symulacji. Wartości liczbowe znajdują się w tabelach w załączniku B.

Rys. 5.5.11 Porównanie wartości współczynników pochłaniania ustroju typu AB w odległości 50 cm od ściany.
5.5.3. Wyniki pomiarów właściwości akustycznych ustrojów mikroperforowanych z rozpraszaniem dźwięku

Na rys. 5.5.14 przedstawiono wyniki pomiaru czasu pogłosu komory, w której umieszczono ustroje rozpraszające dźwięk. Do rozpraszania dźwięku zastosowano pionowo ustawione rury o dwóch średnicach: 16 cm i 31.5 cm, w liczbie 9 i 6 sztuk. Zbadano trzy warianty rozmieszczenia rur pokazane na rys. 5.7. Na wykresie pokazano uzyskane charakterystyki czasu pogłosu komory pustej oraz komory z ustrojami rozpraszającymi.
Rys. 5.5.14 Porównanie czasu pogłosu dla różnych wariantów aranżacji rur rozpraszających.

W kolejnej części badań zmierzono współczynnik pochłaniania dźwięku przez ustrój typu A z uwzględnieniem elementów rozpraszających. Wyniki przedstawiono na rys. 5.5.15.

Rys. 5.5.15 Porównanie współczynników pochłaniania folii mikroperforowanych ustawionych w odległości 40 cm od ściany z uwzględnieniem obecności elementów rozpraszających.

5.6. Omówienie wyników

Uzyskane z pomiarów w komorze pogłosowej UMFC charakterystyki współczynników pochłaniania dźwięku przez grubsze folie mikroperforowane, Sonogamma MA 15-s, mają zbliżony kształt do charakterystyk dostarczonych przez producenta (rys. 5.5.5 oraz rys. 5.5.6). Folie te charakteryzują się największym pochłanianiem dźwięku w zakresie małych częstotliwości 200 – 500 Hz. Zmierzone maksymalne wartości współczynników
pochłaniania dźwięku $\alpha = 0,5$ są mniejsze od podanych przez produenta ($\alpha = 0,8$). Różnice te wynikają zapewne z odmiennego sposobu mocowania brzegów badanych próbek folii.

Folie Microsorber wykazują stosunkowo duże pochłanianie dźwięku w zakresie średnich i dużych częstotliwości (rys. 5.5.7 – 5.5.10). Podwojenie liczby warstw folii mikroperforowanych powoduje przy średnich i dużych częstotliwościach zwiększenie współczynnika pochłaniania takiego ustroju o około 50%.

Zbadano charakterystyki pochłaniania dźwięku przez ustroje dwuwarstwowe, składające się z obu rodzajów folii (rys. 5.5.11 – 5.5.13). Dzięki takiej kombinacji możliwe jest stworzenie ustroju dźwiękochłonnego działającego skutecznie w szerszym paśmie częstotliwości.

Zbadano wpływ rozpraszania odbić dźwięku na charakterystyki pochłaniania ustrojów mikroperforowanych. Rozpraszanie zrealizowano za pomocą 15 pionowych rur PCV o wysokości 2 m. Umieszczenie elementów rozpraszających spowodowało obniżenie czasu pogłosu w pomieszczeniu, w zakresie małych i średnich częstotliwości (rys. 5.5.14). Wywołany tym przyrost chłonności dźwięku w komorze pogłosowej, w zakresie częstotliwości 100 - 160 Hz stanowił 30 – 50 % chłonności komory pustej (rys. 5.6.2). Sposób rozmieszczenia rur w pomieszczeniu w niewielkim stopniu wpływał na charakterystykę czasu pogłosu. Elementy rozpraszające najskuteczniej redukują pogłos, gdy są równomiernie rozstawione przy ścianach pomieszczenia.

Projekt zakładał zastosowanie folii mikroperforowanych do redukcji czasu pogłosu w salach Zamku Królewskiego. Mając na uwadze praktyczne możliwości montażu i lokalizacji folii przeprowadzono badania wpływu, jaki mogą mieć elementy wnętrz rozpraszające odbicia dźwięku, na pochłanianie dźwięku przez folie mikroperforowane usytuowane w sąsiedztwie kolumn i przestrzennych zdobień na ścianach. Badania ustrojów mikroperforowanych z uwzględnieniem elementów rozpraszających (rys. 5.5.15) wykazały, że obecność elementów rozpraszających odbicia dźwięku nie powoduje istotnych zmian charakterystyk współczynnika pochłaniania dźwięku przez ustroje mikroperforowane. Na tej podstawie można wnioskować, że bogaty wystrój wnętrz sal Zamku Królewskiego nie będzie negatywnie wpływać na chłonność akustyczną, którą można uzyskać za pomocą mobilnych, mikroperforowanych ustrojów dźwiękochłonnych.
Rys. 5.6.1 Chłonność dźwięku w komorze pogłosowej oraz przyrost chłonności przy trzech wariantach rozmieszczenia rur rozpraszających.

Rys. 5.6.2 Procentowy przyrost chłonności dźwięku w komorze pogłosowej przy trzech wariantach rozmieszczenia rur rozpraszających.
6. Projekt mobilnych paneli z mikroperforowanymi ustrojami dźwiękochłonnymi

Wyniki wykonanej w ramach pracy analizy i badań laboratoryjnych właściwości mikroperforowanych, przezroczystych ustrojów dźwiękochłonnich zostały wykorzystane do wykonania prototypowej serii mobilnych paneli dźwiękochłonnych, które mogą być zastosowane do korekty akustiki reprezentacyjnych sal Zamku Królewskiego.

Ze względów konserwatorskich, a także z powodu częstych zmian aranżacji sal, najbardziej dogodnym sposobem adaptacji akustycznej wnętrz byłyby lekkie, przenośne panele dźwiękochłonne z transparentnymi mikroperforowanymi foliami i płytami z tworzyw sztucznych.

Przeprowadzone badania wykazały, że najlepszą efektywność i dostatecznie szeroką charakterystykę częstotliwościową współczynnika pochłaniania dźwięku zapewnia ustrój dźwiękochłonny typu AB będący połączeniem płyty MA 15-s oraz folii Microsorber.

Użytkowa wersja prototypowych paneli została opracowana we współpracy z architektem wnętrz. Architekt opracował prototypowe konstrukcje mobilnych ram do paneli dźwiękochłonnych o wymiarach 0,63 x 2,5 m. Ramy te zostały wypełnione arkuszami mikroperforowanych elementów z poliwęglanu. Widok prototypowych wykonan mobilnych paneli dźwiękochłonnych z arkuszami mikroperforowanych folii poliwęglanowych pokazano na fot. 6.1 – 6.3.
W celu zbadania efektywności paneli w warunkach akustycznych sal zamkowych wykonana została prototypowa seria 10 szt. paneli.

Fot 6.2 Widok detali do mocowania w ramie dwóch warstw mikroperforowanych.

Fot 6.3. Montaż prototypowych paneli dźwiękochłonnych w Sali Wielkiej Zamku Królewskiego.
7. Zastosowanie badanych ustrojów mikroperforowanych do korekty akustycznej sal

7.1. Charakterystyka akustyczna badanych sal

Do badań akustycznych sal, w których przeprowadzono pomiary z wykonanymi panelami dźwiękochłonnymi, udostępnione zostały dwie reprezentacyjne sale Zamku Królewskiego w Warszawie, Sala Wielka (Balowa) i Sala Koncertowa.

Sala Wielka oraz Sala Koncertowa wyróżniają się wystrojem architektonicznym zawierającym dużą liczbę elementów rozpraszających dźwięk. Głównymi elementami użytymi do wystroju wnętrza są ściany pokryte tynkiem, kolumny marmurowe, sztukaterie, lustra, okna, itp.

7.1.1. Sala Wielka

Sala Wielka jest miejscem reprezentacyjnych spotkań, konferencji i koncertów z udziałem najwyższych dostojników państwowych. Maksymalna liczba miejsc siedzących wynosi 320 szt. Kubatura akustyczna sali wynosi ok. 3200 m³, a suma powierzchni ograniczających wynosi ok. 1800 m². Podczas przeprowadzania pomiarów w sali znajdowała się maksymalna liczba krzeseł, co wpłynęło na skrócenie czasu pogłosu. Przy takiej aranżacji wnętrza dla pasma 250 – 500 Hz wynosi on ok. 2,6 s. Wartość czasu pogłosu zwiększa się do około 4,5 s po usunięciu krzeseł z sali. Ze wzrostem częstotliwości czas pogłosu zmniejsza się. Na stosunkowo małą wartość czasu pogłosu w zakresie małych częstotliwości wpływa najprawdopodobniej charakter rezonansowy parkietowej podłogi.

<table>
<thead>
<tr>
<th>Częstotliwość [Hz]</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czas pogłosu T30 [s]</td>
<td>2,32</td>
<td>2,43</td>
<td>2,59</td>
<td>2,57</td>
<td>2,20</td>
<td>1,97</td>
<td>1,64</td>
<td>1,23</td>
</tr>
</tbody>
</table>

Wskaźniki czytelności dźwięku C50 i C80 przyjmują w Sali Wielkiej stosunkowo małe wartości. Oznacza to, że w pierwszych 50 – 80 ms do słuchacza dociera mała ilość wczesnej energii w odniesieniu do energii dźwięku pogłosowego.

<table>
<thead>
<tr>
<th>Częstotliwość [Hz]</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wskaźnik C50 [dB]</td>
<td>0,38</td>
<td>-2,53</td>
<td>-4,98</td>
<td>-3,44</td>
<td>-2,98</td>
<td>-2,45</td>
<td>-0,80</td>
<td>1,85</td>
</tr>
<tr>
<td>Wskaźnik C80 [dB]</td>
<td>1,62</td>
<td>0,40</td>
<td>-2,30</td>
<td>-1,75</td>
<td>-1,13</td>
<td>-0,42</td>
<td>1,38</td>
<td>4,22</td>
</tr>
</tbody>
</table>

Na podstawie pomiarów można stwierdzić, iż uzyskanie zrozumiałych przekazów słownych w Sali Wielkiej Zamku Królewskiego bez wspomagania elektroakustycznego wymagałoby zastosowania korekcji wystroju akustycznego sali.
7.1.2. Sala Koncertowa

Kubatura akustyczna Sali Koncertowej wynosi około 2300 m³, a suma powierzchni około 1200 m². Podczas pomiarów w sali znajdowały się krzesła wykonane z tworzywa sztucznego, które charakteryzują się stosunkowo małą dźwiękochłonnością. Charakterystyka czasu pogłosu ma podobny kształt do charakterystyki Sali Wielkiej. Czas pogłosu przyjmuje wartość maksymalną w paśmie 250 – 500 Hz i wynosi około 3 s.

Tab. 7.3 Wartości czasu pogłosu T30 Sali Koncertowej.

<table>
<thead>
<tr>
<th>Częstotliwość [Hz]</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czas pogłosu T30 [s]</td>
<td>2,52</td>
<td>2,91</td>
<td>3,22</td>
<td>3,01</td>
<td>2,71</td>
<td>2,35</td>
<td>1,79</td>
<td>1,30</td>
</tr>
</tbody>
</table>

Tab. 7.4 Wartości wskaźników C50 oraz C80 dla Sali Koncertowej.

<table>
<thead>
<tr>
<th>Częstotliwość [Hz]</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wskaźnik C50 [dB]</td>
<td>-0,03</td>
<td>-2,45</td>
<td>-4,82</td>
<td>-3,80</td>
<td>-3,15</td>
<td>-2,33</td>
<td>-0,51</td>
<td>2,30</td>
</tr>
<tr>
<td>Wskaźnik C80 [dB]</td>
<td>1,37</td>
<td>-0,23</td>
<td>-2,04</td>
<td>-1,95</td>
<td>-1,03</td>
<td>-0,28</td>
<td>1,70</td>
<td>4,69</td>
</tr>
</tbody>
</table>

7.2. Badania właściwości akustycznych pomieszczeń po wprowadzeniu ustrojów mikroperforowanych

Właściwości akustyczne sal zmierzono zgodnie z zaleceniami normy PN-EN ISO 3382-1:2009, metodą pomiaru odpowiedzi impulsowych. Do wyznaczenia odpowiedzi impulsowych badanych pomieszczeń wykorzystano następujący zestaw urządzeń:

- wszechkierunkowy, 12–ścienny zestaw głośnikowy,
- wzmacniacz mocy Crown XTi 4000,
- para mikrofonów ½ cala o charakterystyce wszechkierunkowej Microtech Gefell MK 250 wraz z przedwzmacniaczami MV 220 P48,
- interfejs audio RME Fireface 400,
- komputer PC z oprogramowaniem EASERA.
Rys 7.1 Schemat układu pomiarowego.

Pozycje źródła dźwięku oraz mikrofonów pomiarowych przedstawiono na rys. 7.2 i 7.3. Źródło dźwięku znajdowało się na wysokości 1,5 m, a mikrofony pomiarowe na wysokości 1,2 m. Mikrofony pomiarowe zamocowano do poprzeczki na statywie w odległości 30 cm od siebie. Podczas pierwszej serii pomiarów w salach znajdowały się jedynie krzesła, zaś w drugiej serii w salach umieszczono dodatkowo prototypowe ustroje akustyczne w ilości 10 sztuk.

Do wyznaczenia czasu pogłosu sal T30 na podstawie zmierzonych odpowiedzi impulsowych zastosowano pakiet obliczeniowy Brul & Kjaer DIRAC.
Rys. 7.2 Rozmieszczenie ustrojów prototypowych oraz punktów pomiarowych w Sali Wielkiej.

Fot. 7.2 Ustroje prototypowe w Sali Koncertowej.
Rys. 7.3 Rozmieszczenie urzdów prototypowych oraz punktów pomiarowych w Sali Koncertowej.
7.3. Wyniki badań

Wyniki badań czasu pogłosu Sali Wielkiej przedstawiono na rys. 7.4. Na rysunku tym przedstawiono dwie charakterystyki czasu pogłosu, sali bez adaptacji oraz sali z adaptacją w postaci prototypowych paneli dźwiękochłonnych. Wartości liczbowe znajdują się w tab. 15 w załączniku B.

![Diagram 7.4](image)

Rys. 7.4 Porównanie wartości czasu pogłosu T30 Sali Wielkiej bez adaptacji oraz z adaptacją w postaci prototypowych paneli dźwiękochłonnych.

Wyniki badań czasu pogłosu Sali Koncertowej przedstawiono na rys. 7.5. Podobnie jak w przypadku Sali Wielkiej, na wykresie przedstawiono dwie charakterystyki czasu pogłosu, sali bez adaptacji oraz sali z adaptacją z prototypowych paneli dźwiękochłonnych. Wartości liczbowe znajdują się w tab. 15 w załączniku B.

![Diagram 7.5](image)

Rys. 7.5 Porównanie wartości czasu pogłosu T30 Sali Koncertowej bez adaptacji oraz z adaptacją w postaci prototypowych paneli dźwiękochłonnych.
Na rys. 7.6 i 7.7 zamieszczono charakterystyki współczynnika pochłaniania dźwięku paneli dźwiękochłonnych obliczone za pomocą wzorów 5.4 i 5.5 dla zmierzonych wartości czasu pogłosu oraz danych kubaturowych Sali Wielkiej i Sali Koncertowej.

Rys. 7.6 Charakterystyka współczynnika pochłaniania dźwięku prototypowych paneli dźwiękochłonnych obliczona ze zmierzonych wartości czasu pogłosu oraz danych kubaturowych Sali Wielkiej.

Rys. 7.7 Charakterystyka współczynnika pochłaniania dźwięku prototypowych paneli dźwiękochłonnych obliczona z zmierzonych wartości czasu pogłosu oraz danych kubaturowych Sali Koncertowej.

7.4. Omówienie wyników pomiarów akustycznych sal z mikroperforowanymi panelami dźwiękochłonnymi

Zakres pomiarów akustycznych dwóch sal zamkowych obejmował:
- charakterystykę czasu pogłosu T30 Sali Wielkiej przed wstawieniem prototypowych paneli dźwiękochłonnych,
charakterystykę czasu pogłosu T30 Sali Wielkiej po wstawieniu 10 szt. prototypowych paneli dźwiękochłonnych,

charakterystykę czasu pogłosu T30 Sali Koncertowej przed wstawieniem prototypowych paneli dźwiękochłonnych,

charakterystykę czasu pogłosu T30 Sali Koncertowej po wstawieniu 10 szt. prototypowych paneli dźwiękochłonnych.

Czas pogłosu Sali Wielkiej (rys. 7.4) charakteryzuje maksimum w oktawach 250 – 500 Hz. Czas pogłosu w tych oktawach wynosił około 2,6 s. W zakresie mniejszych częstotliwości, w oktawach 63 i 125 Hz, czas pogłosu wynosił 2,3 i 2,4 s. Powyżej 500 Hz czas pogłosu monotonicznie zmniejszał się do około 1,2 s w oktawie 8 kHz. Po umieszczeniu w sali 10 szt. paneli dźwiękochłonnych czas pogłosu w zakresie średnich częstotliwości 500 Hz – 2 kHz zmniejszył się o około 5 – 7 %. Stosunkowo mała zmiana wartości czasu pogłosu wynika z małej liczby paneli, które miały sumaryczną powierzchnię 15 m², co stanowi zaledwie 0,8 % całkowitej powierzchni wnętrza Sali Wielkiej. Zmniejszenie czasu pogłosu ma jednak istotne znaczenie dla wrażenia pogłosowości, ponieważ jest większe niż próg spostrzegania tego zjawiska, dla którego jnd ma wartość 5% (Vorländer, 2008).

Czas pogłosu Sali Koncertowej (rys. 7.5) charakteryzuje maksimum w oktawie 250 Hz o wartości około 3,3 s. W oktawie 125 Hz, czas pogłosu wynosił 2,8 s. Powyżej 250 Hz czas pogłosu monotonicznie zmniejszał się do około 1 s w oktawie 8 kHz. Po umieszczeniu w sali 10 szt. paneli dźwiękochłonnych w Sali Koncertowej czas pogłosu zmniejszył się o około 7 – 10 % w zakresie średnich częstotliwości 250 Hz – 2 kHz. Zmiana wartości czasu pogłosu jest w przypadku Sali Koncertowej większa, niż w Sali Wielkiej, co wynika z mniejszej kubatury i powierzchni wnętrza Sali Koncertowej. Sumaryczna powierzchnia paneli dźwiękochłonnych jest również relatywnie mała, gdyż wynosi 1,3 % całkowitej powierzchni wnętrza Sali Koncertowej. Zmniejszenie czasu pogłosu jest jednak istotne, mając na uwadze 5% próg spostrzegania tego zjawiska.

Z danych pomiarowych eksperymentu w salach zamkowych wyznaczono orientacyjne wartości współczynnika pochłaniania dźwięku prototypowych paneli dźwiękochłonnych (rys. 7.6 i 7.7). Współczynnik ten w zakresie częstotliwości powyżej 200 Hz wyniósł średnio 0,7 – 0,9.
8. Podsumowanie prac

We wstępnej części pracy omówiono podstawowe zasady kształtowania akustyki pomieszczeń za pomocą ustrojów dźwiękochłonnych. Szczególną uwagę poświęcono zastosowaniu dźwiękochłonnych ustrojów wykonanych z mikroperforowanych folii i płyt. Tego typu materiały łączą funkcje akustyczne oraz architektoniczne jako atrakcyjny, przezroczysty materiał do wystroju wnętrz.

Zasadnicza część pracy dotyczy właściwości akustycznych mikroperforowanych folii i płyt. Przedstawiono opracowany na podstawie publikacji specyficzny mechanizm pochłaniania dźwięku przez takie ustroje. Pochłanianie dźwięku w takich materiałach następuje na skutek przepływu powietrza w otworach o średnicy rzędu ułamków milimetrów, w foliach i płytcach o grubości 0,1 – 5 mm.

Przedstawiono metodykę wyznaczania współczynnika pochłaniania dźwięku przez ustroje na podstawie ich impedancji akustycznej. Opracowano teoretyczny wzór do obliczeń impedancji mikroperforowanych materiałów dźwiękochłonnych i na tej podstawie opracowano algorytm do modelowania komputerowego właściwości jednowarstwowych i wielowarstwowych ustrojów akustycznych.

Wykonano obliczenia i pomiary współczynnika pochłaniania dźwięku w warunkach laboratoryjnych. Wyniki pomiarów wykazały dobrą zgodność z obliczeniami w przypadku małych odległości ustroju, rzędu 20 cm, od twardej odbijającej powierzchni. Po zwiększeniu odległości różnice między obliczeniami a pomiarami nieco wzrosły. Przyczyną rozbieżności był wpływ przyrostu otwartej przestrzeni na krawędziach badanych paneli, który nie był uwzględniony w założeniach do teoretycznego modelu pochłaniania dźwięku.

Badania symulacyjne i pomiary wykazały, że możliwe jest skonstruowanie wąskopasmowych i szerokopasmowych paneli dźwiękochłonnych z mikroperforowanych cienkich folii i płyt. Wykazano, że poszerzenie pasma współczynnika pochłaniania jest możliwe poprzez tworzenie wielowarstwowych struktur z folii o różnej grubości i różnym współczynniku perforacji. W pomiarach stwierdzono, że współczynniki pochłaniania dźwięku badanych ustrojów mogą mieć wartości od 0,4 do 0,9.

W nawiązaniu do ewentualnego zastosowania ustrojów w praktyce zbadano wpływ elementów rozpraszających, znajdujących się między panelami dźwiękochłonnymi a powierzchnią odbijającą. Na podstawie badań stwierdzono, że wpływ rozpraszających struktur jest stosunkowo niewielki. Wykonano projekt mobilnych paneli dźwiękochłonnych. Na podstawie projektu wykonana została prototypowa seria 10 sztuk paneli o powierzchni 1,5
m². Działanie paneli oceniono na podstawie zmiany charakterystyk pogłosowych w zabytkowych wnętrzach architektonicznych Zamku Królewskiego w Warszawie.
9. Bibliografia

Malecki, I. (1964). Teoria fal i układów akustycznych. PWN.

function alpha_theta = mpp_alpha(f, theta, l, Da, d, t, ds)

% Function to calculate absorption coefficient for a given frequency and incidence angle
% f: Frequency [Hz]
% theta: Incidence angle [rad]
% l: Cavity depth [m]
% Da: Area/hole [m^2]
% d: Hole diameter [m]
% t: Sheet thickness [m]
% ds: Surface density [kg/m^2]

a = d/2; % Hole radius
w = 2*pi*f; % Angular frequency
C = 343; % Speed of sound in air
k = w/C; % Wave number
rho = 1.21; % Air density
viscosity = 1.162*1.85e-5; % Viscosity of air
eta = (pi*a^2)/Da; % Open area

% Impedance, top of cavity
zd = -1i*rho*C*cot(k*l*cos(theta));
zd = zd./cos(theta);

% Impedance of covering sheet (perforation)
k = a*sqrt(rho*w/viscosity);
s = k*sqrt(-1i);
zl = 1i*w*rho*t./((1 - 2*besselj(1,s)./(s.*besselj(0,s))));
zl = zl/eta + sqrt(2)*kd*viscosity/(2*a*eta) + 1i*w*0.85*2*rho*a/eta;

% Impedance of covering sheet (membrane)
r = 1;
m = ds/(rho*C);
zm = r + 1i*w*m;
zm = zm*(rho*C);

% Impedance of the whole structure
zh = ((zm.*zl)./(zm+zl));
z = zh + zd;
z = z.*cos(theta);

R = (z-rho*C)./(z+rho*C); % Reflection factor
alpha_theta = 1-abs(R).^2; % Absorption coefficient
end

function alpha_theta = mpp_double_alpha(f, theta, l, Da, d, t, ds, l2, Da2, d2, t2, ds2)

% Function for double layer calculation
% f: Frequency [Hz]
% theta: Incidence angle [rad]
% l: Cavity depth [m]
% Da: Area/hole [m^2]
% d: Hole diameter [m]
% t: Sheet thickness [m]
% ds: Surface density [kg/m^2]
% [l2]2: Material properties of covering sheet 2

% Calculation code...
\[
\begin{align*}
a = d/2; \quad & \text{%Hole radius} \\
a_2 = d_2/2; \\
w = 2*pi*f; \\
c = 343; \\
k = w/c; \\
rho = 1.21; \\
viscosity &= 1.162*1.85e^{-5}; \\
eta &= (pi*a^2)/Da; \quad & \text{%Open area (sheet 1)} \\
eta_2 &= (pi*a_2^2)/Da_2; \quad & \text{%Open area (sheet 2)} \\
\end{align*}
\]

\[
\begin{align*}
\text{Impedance, top of cavity}; \\
z_d &= -1i*rho*c*cot(k*l*cos(theta)); \\
z_{d1} &= z_d./cos(theta); \\
\end{align*}
\]

\[
\begin{align*}
\text{Impedance, top of second cavity}; \\
z_d &= -1i*rho*c*cot(k*l_2*cos(theta)); \\
z_{d2} &= z_d./cos(theta); \\
\end{align*}
\]

\[
\begin{align*}
\text{Impedance of covering sheet 1 (perforation)} \\
k_d &= a*sqrt(rho*w/viscosity); \\
s &= kd*sqrt(-1i); \\
z_{l1} &= li*w*rho*t./(1 - 2*besselj(1,s)./(s.*besselj(0,s))); \\
z_{l1} &= z_{l1}/eta + sqrt(2)*kd*viscosity/(2*a*eta) + li*w*0.85*2*rho*a/eta; \\
\end{align*}
\]

\[
\begin{align*}
\text{Impedance of covering sheet 2 (perforation)} \\
k_d &= a_2*sqrt(rho*w/viscosity); \\
s &= kd*sqrt(-1i); \\
z_{l2} &= li*w*rho*t_2./(1 - 2*besselj(1,s)./(s.*besselj(0,s))); \\
z_{l2} &= z_{l2}/eta_2 + sqrt(2)*kd*viscosity/(2*a_2*eta_2) + li*w*0.85*2*rho*a_2/eta_2; \\
\end{align*}
\]

\[
\begin{align*}
\text{Impedance of covering sheet 1 (membrane)} \\
r &= 1; \\
m &= ds/(rho*c); \\
z_{m1} &= r + li*w*m; \\
z_{m1} &= z_{m1}*(rho*c); \\
\end{align*}
\]

\[
\begin{align*}
\text{Impedance of covering sheet 2 (membrane)} \\
r &= 1; \\
m &= ds_2/(rho*c); \\
z_{m2} &= r + li*w*m; \\
z_{m2} &= z_{m2}*(rho*c); \\
\end{align*}
\]

\[
\begin{align*}
\text{Impedance of the whole structure} \\
z_{h1} &= ((z_{m1}.*z_{l1})./(z_{m1}+z_{l1})); \\
z_{h2} &= ((z_{m2}.*z_{l2})./(z_{m2}+z_{l2})); \\
z_{hd1} &= z_{h1} + z_{d1}; \\
z_{hd12} &= (z_{hd1}.*z_{d2})./(z_{hd1}+z_{d2}); \\
z &= z_{hd12} + z_{h2}; \\
z &= z.*cos(theta); \\
R &= (z-rho*c)./(z+rho*c); \quad \text{%reflection factor} \\
alpha_{theta} &= 1-abs(R).^2; \quad \text{%absorption coefficient} \\
\end{align*}
\]

end

57
11. Załącznik B.

Tab. 1 Wartości czasu pogłosu komory laboratoryjnej.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT [s]</td>
<td>2.41</td>
<td>2.23</td>
<td>2.19</td>
<td>2.52</td>
<td>2.38</td>
<td>2.57</td>
<td>2.59</td>
<td>2.99</td>
<td>2.83</td>
<td>2.75</td>
</tr>
<tr>
<td>f [Hz]</td>
<td>1000</td>
<td>1250</td>
<td>1600</td>
<td>2500</td>
<td>3150</td>
<td>4000</td>
<td>5000</td>
<td>6300</td>
<td>8000</td>
<td>10000</td>
</tr>
<tr>
<td>RT [s]</td>
<td>2.63</td>
<td>2.43</td>
<td>2.23</td>
<td>1.93</td>
<td>1.68</td>
<td>1.49</td>
<td>1.28</td>
<td>1.06</td>
<td>0.85</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Tab. 2 Obliczone charakterystyki współczynnika pochłaniania ustrój A dla dwóch odległości od ściany.

| f [Hz] | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 |
|--------|
| d=40 cm | 0.45| 0.57| 0.66| 0.69| 0.64| 0.53| 0.37| 0.35| 0.40| 0.31| 0.29| 0.23| 0.19| 0.16| 0.12| 0.09| 0.07| 0.06|
| d=20 cm | 0.16| 0.25| 0.37| 0.51| 0.64| 0.68| 0.62| 0.52| 0.39| 0.27| 0.28| 0.25| 0.18| 0.16| 0.12| 0.09| 0.07| 0.06|

Tab. 3 Obliczone charakterystyki współczynnika pochłaniania ustrój B dla dwóch odległości od ściany.

| f [Hz] | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 |
|--------|
| d=40 cm | 0.23| 0.30| 0.38| 0.46| 0.50| 0.47| 0.34| 0.23| 0.35| 0.35| 0.32| 0.33| 0.34| 0.33| 0.32| 0.31| 0.29| 0.27|
| d=20 cm | 0.07| 0.11| 0.15| 0.22| 0.31| 0.40| 0.48| 0.51| 0.47| 0.33| 0.24| 0.36| 0.34| 0.32| 0.31| 0.29| 0.28|

Tab. 4 Obliczone charakterystyki współczynnika pochłaniania ustrój BB dla dwóch odległości od ściany.

| f [Hz] | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 |
|--------|
| d=50 cm | 0.30| 0.38| 0.47| 0.56| 0.65| 0.72| 0.71| 0.63| 0.60| 0.61| 0.58| 0.52| 0.48| 0.46| 0.49| 0.41| 0.39| 0.35|
| d=30 cm | 0.08| 0.12| 0.17| 0.24| 0.32| 0.41| 0.50| 0.57| 0.63| 0.66| 0.63| 0.55| 0.42| 0.39| 0.49| 0.40| 0.39| 0.36|

Tab. 5 Obliczone charakterystyki współczynnika pochłaniania ustrój AB dla trzech odległości od ściany.

| f [Hz] | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 |
|--------|
| d=50 cm | 0.55| 0.66| 0.75| 0.78| 0.75| 0.63| 0.52| 0.55| 0.61| 0.63| 0.59| 0.51| 0.39| 0.31| 0.40| 0.33| 0.31| 0.29|
| d=30 cm | 0.26| 0.36| 0.48| 0.60| 0.72| 0.77| 0.74| 0.68| 0.66| 0.65| 0.61| 0.52| 0.38| 0.32| 0.40| 0.33| 0.31| 0.29|
| d=16 cm | 0.06| 0.09| 0.13| 0.20| 0.29| 0.40| 0.53| 0.65| 0.72| 0.71| 0.66| 0.55| 0.41| 0.32| 0.40| 0.34| 0.31| 0.29|

Tab. 6 Porównanie współczynników pochłaniania ustrój A w odległości 40 cm od ściany.

Sym.	0.45	0.57	0.66	0.69	0.64	0.53	0.37	0.35	0.40	0.31	0.29	0.23	0.19	0.16	0.12	0.09	0.07	0.06
Bad.	0.40	0.13	0.24	0.42	0.49	0.42	0.34	0.36	0.42	0.35	0.36	0.34	0.31	0.25	0.19	0.14	0.08	0.01
ISO 354	0.54	0.66	0.77	0.82	0.81	0.73	0.55	0.48	0.54	0.45	0.42	0.34	0.31	0.20	0.17	0.19	0.12	0.12

Tab. 7 Porównanie współczynników pochłaniania ustrój A w odległości 20 cm od ściany.

Sym.	0.16	0.25	0.37	0.51	0.64	0.68	0.62	0.52	0.39	0.27	0.28	0.25	0.18	0.16	0.12	0.09	0.07	0.06
Bad.	0.19	0.10	0.22	0.37	0.47	0.47	0.47	0.50	0.42	0.32	0.32	0.36	0.29	0.27	0.22	0.20	0.16	0.14
ISO 354	0.23	0.33	0.48	0.62	0.73	0.79	0.78	0.71	0.59	0.42	0.41	0.38	0.28	0.26	0.17	0.16	0.14	0.09

58
Tab. 8 Porównanie współczynników pochłaniania usterku typu B w odległości 40 cm od ściany.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>0,23</td>
<td>0,30</td>
<td>0,38</td>
<td>0,46</td>
<td>0,50</td>
<td>0,47</td>
<td>0,34</td>
<td>0,23</td>
<td>0,35</td>
<td>0,35</td>
<td>0,32</td>
<td>0,33</td>
<td>0,34</td>
<td>0,33</td>
<td>0,32</td>
<td>0,31</td>
<td>0,29</td>
<td>0,27</td>
</tr>
<tr>
<td>Bad.</td>
<td>0,08</td>
<td>0,11</td>
<td>0,11</td>
<td>0,19</td>
<td>0,24</td>
<td>0,27</td>
<td>0,18</td>
<td>0,24</td>
<td>0,32</td>
<td>0,37</td>
<td>0,41</td>
<td>0,45</td>
<td>0,50</td>
<td>0,54</td>
<td>0,52</td>
<td>0,53</td>
<td>0,53</td>
<td>0,51</td>
</tr>
</tbody>
</table>

Tab. 9 Porównanie współczynników pochłaniania usterku typu B w odległości 20 cm od ściany.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>0,07</td>
<td>0,11</td>
<td>0,15</td>
<td>0,22</td>
<td>0,31</td>
<td>0,40</td>
<td>0,48</td>
<td>0,51</td>
<td>0,47</td>
<td>0,33</td>
<td>0,24</td>
<td>0,36</td>
<td>0,34</td>
<td>0,32</td>
<td>0,31</td>
<td>0,31</td>
<td>0,29</td>
<td>0,28</td>
</tr>
<tr>
<td>Bad.</td>
<td>0,07</td>
<td>0,07</td>
<td>0,06</td>
<td>0,13</td>
<td>0,23</td>
<td>0,30</td>
<td>0,28</td>
<td>0,41</td>
<td>0,42</td>
<td>0,35</td>
<td>0,35</td>
<td>0,47</td>
<td>0,48</td>
<td>0,51</td>
<td>0,49</td>
<td>0,51</td>
<td>0,50</td>
<td>0,49</td>
</tr>
</tbody>
</table>

Tab. 10 Porównanie współczynników pochłaniania usterku typu BB w odległości 40 cm od ściany.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>0,30</td>
<td>0,38</td>
<td>0,47</td>
<td>0,56</td>
<td>0,65</td>
<td>0,72</td>
<td>0,71</td>
<td>0,63</td>
<td>0,60</td>
<td>0,61</td>
<td>0,58</td>
<td>0,52</td>
<td>0,48</td>
<td>0,46</td>
<td>0,49</td>
<td>0,41</td>
<td>0,39</td>
<td>0,35</td>
</tr>
<tr>
<td>Bad.</td>
<td>0,10</td>
<td>0,14</td>
<td>0,15</td>
<td>0,24</td>
<td>0,30</td>
<td>0,37</td>
<td>0,28</td>
<td>0,37</td>
<td>0,47</td>
<td>0,55</td>
<td>0,70</td>
<td>0,79</td>
<td>0,81</td>
<td>0,84</td>
<td>0,81</td>
<td>0,77</td>
<td>0,77</td>
<td>0,76</td>
</tr>
</tbody>
</table>

Tab. 11 Porównanie współczynników pochłaniania usterku typu BB w odległości 20 cm od ściany.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>0,08</td>
<td>0,12</td>
<td>0,17</td>
<td>0,24</td>
<td>0,32</td>
<td>0,41</td>
<td>0,50</td>
<td>0,57</td>
<td>0,63</td>
<td>0,66</td>
<td>0,63</td>
<td>0,55</td>
<td>0,42</td>
<td>0,39</td>
<td>0,49</td>
<td>0,40</td>
<td>0,39</td>
<td>0,36</td>
</tr>
<tr>
<td>Bad.</td>
<td>0,07</td>
<td>0,08</td>
<td>0,07</td>
<td>0,19</td>
<td>0,30</td>
<td>0,37</td>
<td>0,37</td>
<td>0,35</td>
<td>0,51</td>
<td>0,54</td>
<td>0,61</td>
<td>0,70</td>
<td>0,73</td>
<td>0,78</td>
<td>0,77</td>
<td>0,70</td>
<td>0,68</td>
<td>0,71</td>
</tr>
</tbody>
</table>

Tab. 12 Porównanie wartości współczynników pochłaniania usterku typu AB w odległości 50 cm od ściany.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>0,55</td>
<td>0,66</td>
<td>0,75</td>
<td>0,78</td>
<td>0,75</td>
<td>0,63</td>
<td>0,52</td>
<td>0,55</td>
<td>0,61</td>
<td>0,63</td>
<td>0,59</td>
<td>0,51</td>
<td>0,39</td>
<td>0,31</td>
<td>0,40</td>
<td>0,33</td>
<td>0,31</td>
<td>0,29</td>
</tr>
<tr>
<td>Bad.</td>
<td>0,51</td>
<td>0,37</td>
<td>0,35</td>
<td>0,48</td>
<td>0,56</td>
<td>0,49</td>
<td>0,49</td>
<td>0,39</td>
<td>0,50</td>
<td>0,55</td>
<td>0,59</td>
<td>0,70</td>
<td>0,76</td>
<td>0,80</td>
<td>0,76</td>
<td>0,68</td>
<td>0,61</td>
<td>0,58</td>
</tr>
</tbody>
</table>

Tab. 13 Porównanie wartości współczynników pochłaniania usterku typu AB w odległości 30 cm od ściany.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>0,26</td>
<td>0,36</td>
<td>0,48</td>
<td>0,60</td>
<td>0,72</td>
<td>0,77</td>
<td>0,74</td>
<td>0,68</td>
<td>0,66</td>
<td>0,65</td>
<td>0,61</td>
<td>0,52</td>
<td>0,38</td>
<td>0,32</td>
<td>0,40</td>
<td>0,33</td>
<td>0,31</td>
<td>0,29</td>
</tr>
<tr>
<td>Bad.</td>
<td>0,24</td>
<td>0,31</td>
<td>0,29</td>
<td>0,45</td>
<td>0,48</td>
<td>0,51</td>
<td>0,50</td>
<td>0,50</td>
<td>0,52</td>
<td>0,53</td>
<td>0,58</td>
<td>0,69</td>
<td>0,77</td>
<td>0,75</td>
<td>0,75</td>
<td>0,68</td>
<td>0,62</td>
<td>0,58</td>
</tr>
</tbody>
</table>

Tab. 14 Porównanie wartości współczynników pochłaniania usterku typu AB w odległości 16 cm od ściany.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>0,06</td>
<td>0,09</td>
<td>0,13</td>
<td>0,20</td>
<td>0,29</td>
<td>0,40</td>
<td>0,53</td>
<td>0,65</td>
<td>0,72</td>
<td>0,71</td>
<td>0,66</td>
<td>0,55</td>
<td>0,41</td>
<td>0,32</td>
<td>0,40</td>
<td>0,34</td>
<td>0,31</td>
<td>0,29</td>
</tr>
<tr>
<td>Bad.</td>
<td>0,11</td>
<td>0,17</td>
<td>0,20</td>
<td>0,26</td>
<td>0,35</td>
<td>0,44</td>
<td>0,44</td>
<td>0,59</td>
<td>0,66</td>
<td>0,67</td>
<td>0,71</td>
<td>0,74</td>
<td>0,70</td>
<td>0,69</td>
<td>0,64</td>
<td>0,58</td>
<td>0,55</td>
<td>0,52</td>
</tr>
</tbody>
</table>
Tab. 15 Porównanie wartości czasu pogłosu T30 Sali Wielkiej oraz Sali Koncertowej bez adaptacji oraz z adaptacją w postaci prototypowych paneli dźwiękochłonnych.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>Sala Wielka</th>
<th>Sala Koncertowa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T30 bez adaptacji</td>
<td>T30 z adaptacją</td>
</tr>
<tr>
<td>100</td>
<td>2,43</td>
<td>2,42</td>
</tr>
<tr>
<td>125</td>
<td>2,47</td>
<td>2,47</td>
</tr>
<tr>
<td>160</td>
<td>2,45</td>
<td>2,48</td>
</tr>
<tr>
<td>200</td>
<td>2,49</td>
<td>2,49</td>
</tr>
<tr>
<td>250</td>
<td>2,49</td>
<td>2,49</td>
</tr>
<tr>
<td>315</td>
<td>2,75</td>
<td>2,58</td>
</tr>
<tr>
<td>400</td>
<td>2,83</td>
<td>2,69</td>
</tr>
<tr>
<td>500</td>
<td>2,55</td>
<td>2,47</td>
</tr>
<tr>
<td>630</td>
<td>2,41</td>
<td>2,27</td>
</tr>
<tr>
<td>800</td>
<td>2,31</td>
<td>2,16</td>
</tr>
<tr>
<td>1000</td>
<td>2,17</td>
<td>2,05</td>
</tr>
<tr>
<td>1250</td>
<td>2,12</td>
<td>1,99</td>
</tr>
<tr>
<td>1600</td>
<td>2,07</td>
<td>1,97</td>
</tr>
<tr>
<td>2000</td>
<td>1,97</td>
<td>1,90</td>
</tr>
<tr>
<td>2500</td>
<td>1,90</td>
<td>1,81</td>
</tr>
<tr>
<td>3150</td>
<td>1,75</td>
<td>1,66</td>
</tr>
<tr>
<td>4000</td>
<td>1,57</td>
<td>1,53</td>
</tr>
<tr>
<td>5000</td>
<td>1,34</td>
<td>1,31</td>
</tr>
<tr>
<td>6300</td>
<td>1,14</td>
<td>1,11</td>
</tr>
<tr>
<td>8000</td>
<td>0,95</td>
<td>0,92</td>
</tr>
<tr>
<td>10000</td>
<td>0,70</td>
<td>0,70</td>
</tr>
</tbody>
</table>